
Querying and Visualizing Gridded Datasets for e-Science

Bill Howe
OGI School of Science & Engineering at

Oregon Health & Science University
Beaverton, Oregon
bill@cse.ogi.edu

David Maier
OGI School of Science & Engineering at

Oregon Health & Science University
Beaverton, Oregon
maier@cse.ogi.edu

Abstract

We demonstrate a web service and client application
for querying and visualizing datasets defined over arbi-
trary topological grids. Such gridded datasets are pro-
duced by Earth science simulations, 2D and 3D visual-
ization software, and image processing systems. Existing
systems for manipulating gridded datasets capture only
simple grids or do not support remote access.We exercise
a novel data model by using it to build a web-enabled visu-
alization system. We show that complex visualizations,
including animations, can be expressed using our data
model and associated algebra. Further, we demonstrate
a standards-based, service-oriented architecture for pro-
cessing the algebra expressions and returning results over
the web.

1. Introduction

Transparent sharing of scientific data is becoming a
primary requirement for the Earth science community
[2]. We have developed a mechanism for sharing a par-
ticular class of scientific datasets: those defined over a
topological grid structure1. For example, a timeseries
might be defined over a 1-dimensional grid, while fluid
flow over an airplane wing might be defined over a 3-
dimensional grid.

Gridded datasets are difficult to accommodate us-
ing existing database technology due, in part, to data
model limitations [8, 9]. In recent work [8], we pre-
sented a novel algebra of gridfields for manipulating
gridded datasets. In this demonstration, we show how
our algebra can be used to enable remote processing of

1 Our usage of the term “grid” is not directly related to the no-
tionofGrid computing.Unfortunately,bothmeaningsareused
in the context of e-Science. We use the term “grid” for consis-
tency with our previous work, but the word “mesh” also suf-
fices.

gridded datasets, which in turn facilitates data shar-
ing between scientific communities.

The context for our interest in gridded datasets is
CORIE [4], an Environmental Observation and Fore-
casting System designed to support scientific and in-
dustrial interests in the Columbia River estuary. The
CORIE system both measures and simulates the phys-
ical properties of the estuary, generating 5GB of data
and thousands of data products for each simulation run,
including visualizations, aggregated results and derived
datasets. The data products are consumed for many
purposes, including salmon habitability studies and en-
vironmental impact assessments.

In the current production CORIE system, “canned”
visualizations are produced eagerly for every run.
These visualizations are organized by date and pub-
lished on the web. Users cannot customize their data
products nor access the data directly.

Only a few use cases are satisfied by this rigid in-
frastructure. Many potential users require access to the
data itself. Weather forecasters can use CORIE results
as a regional inputs for global simulations. Government
agencies can investigate much smaller scale phenom-
ena, incorporating salinity data into, e.g., groundwa-
ter simulations along the estuary’s shore. Colleagues
who collect or generate data over the same domain can
compare results with the CORIE system quantitatively
rather than relying on subjective interpretation of gif
images. Using our web service, clients can not only re-
trieve data, but they can perform arbitrary transfor-
mations on the data prior to download. Using our pro-
totype client application, these datasets can be visual-
ized automatically (Figure 1), i.e., without specifying
parameters.

Sharing scientific data with other researchers is cer-
tainly not a goal unique to the CORIE system. The
term e-Science is used to connote global, distributed
collaboration enabled by sharing of both data and com-
pute resources [1].

Figure 1. A visualization of the water’s surface,

shaded by the magnitude of horizontal velocity.

The systems to support e-Science are still evolv-
ing. Advocates of Grid computing [7] suggest that
large-scale scientific data management requires seam-
less inter-operation of heterogeneous compute re-
sources and heterogeneous data sources. Currently,
these Data Grid technologies are in their infancy,
adopting uninterpreted files as the currency of ex-
change and analysis [3]. As the database commu-
nity has demonstrated, relying on client applications
to interpret raw files leads to a problem of data de-
pendence, where client applications are brittle with
respect to changes in data location, organization, or ac-
cess methods.

Perhaps the more direct cost to file-based data shar-
ing is performance. Clients must download and process
entire files rather than working with only their partic-
ular region of interest. Further, coarse-grained process-
ing of entire files impedes parallelization. Fine grained
operations over a logical model can be scheduled to dif-
ferent nodes to improve utilization.

The relational model solved the data dependence
problem for table-structured data by providing a level
of indirection between applications and physical file or-
ganization. Applications interact with a logical view of
the data, while the database server software manages
the physical realities of files, indexes, and access paths.

A similar approach is appropriate for grid-structured
data. To illustrate our approach, we demonstrate a web
service for processing queries remotely over gridded
datasets, and a client application for visualizing the re-
sults. Before we describe these components, we briefly
review the data model presented more thoroughly in
previous work [8].

2. Data Model

A node is a named but otherwise featureless object.
A cell is a sequence of nodes; a polygon in 2 dimen-
sions, or a polyhedron in 3 dimensions. A grid is a col-
lection of cells organized by their dimension. Unlike
spatial database systems, nodes are referred to by an

����� ����
	���� ������ �

����� ������ ��� !"$#&% '

(�)�* +,�-�. /0�1 23�4�5 6

7�8�9�:;�<�= >?�@ AB�C�D E

FHGJILKMONQPSRTU

V�W XY�Z�[\

]_^ `a�b�c�d

e�f ghQiJj k
l�m�npoqHrSs&t

Figure 2. Datasets bound to the nodes and polygons

of a 2-dimensional unstructured grid.

internal identifier rather than a set of geometric coordi-
nates. With node ids, we can reason about topological
properties of grids independently of any particular ge-
ometric embedding. For example, we can reason about
“neighborhoods” of cells without knowledge of (x, y, z)
coordinates of their nodes. Therefore, we can answer
questions such as “Are these two cells touching?” with-
out invoking geometric algorithms. These features are
important for efficient processing [8].

A gridfield consists of a grid and a dataset bound
to the cells of a particular dimension. We might bind
timestamps to a 1-dimensional gridfield to construct
an ordered sequence with a “linear” topology. In the
CORIE system, examples of bound datasets include
the physical characteristics of the ocean and river, as
well as simple x, y, z coordinates.

Figure 2 shows a 2-dimensional unstructured (non-
rectilinear) grid with two datasets bound to it. Geo-
metric coordinates x and y are bound to each node of
the grid, as are salinity and temperature values. Area
and flux values are bound to each 2-dimensional poly-
gon.

We have also defined several operators over grid-
fields. The restrict operator is analogous to the rela-
tional select. The bind operator reads in an array and
associates it with an existing grid. The merge oper-
ator computes the intersection of two grids, and re-
binds the data appropriately. The cross product opera-
tor computes an d-dimensional gridfield from two grid-
fields of dimension x and y, where d = x + y. To visu-
alize a product grid, consider that the cartesian plane
can be viewed as the cross product of two real num-
ber lines. If those two number lines are divided into
discrete segments, then their cross product will be di-
vided into discrete rectangles. In our model, we for-
malize and generalize this intuition to handle arbitrary
grids.

The most expressive operator in our algebra is ag-
gregate. The aggregate operator can be used to map
one grid onto another, apply a function to the bound
data, smooth noisy data by averaging over neighbor-
hoods, or aggregate over the entire grid to produce a

6

2.8
2

0

0
1

2.4

4.8

7
(0,0)

(7,6)

Figure 3. Constructing a 2-dimensional regular grid

from 1-dimensional regular grids. Many data models

support regular grids only.

single value. The operator is programmed by two func-
tions: an assignment function to map cells in the source
grid to cells in the target grid, and an aggregation func-
tion to transform the data values bound to the mapped
cells.

Many existing data models only support regular or
rectilinear grids. To illustrate that these grids are a
subset of the grids we can express in our model, con-
sider Figure 3. A linear 1-dimensional grid is a sequence
of nodes connected by 1-dimensional edges. A regular
grid is a linear grid or the cross product of two regu-
lar grids. Regular grids are isomorphic to multidimen-
sional arrays, where the linear grids represent the in-
dividual dimensions. Rectilinear gridfields can be con-
structed similarly by binding coordinate values to the
individual dimensions. In Figure 3, a sorted array of
x-values is bound to one linear grid, and a sorted ar-
ray of y-values is bound to another linear grid. The
cross-product of the two linear grids results in a 2-
dimensional rectilinear grid representing the xy plane.

Existing data models targeted at gridded datasets
(e.g., [5]) capture only regular or rectilinear grids. The
gridfield in Figure 2 is unstructured, meaning that it
contains no regularity to simplify processing; this grid-
field cannot be expressed in most data processing sys-
tems. Visualization libraries can manipulate unstruc-
tured grids, but do not offer an algebra to simplify the
semantics and afford optimization. Further, visualiza-
tion systems do not provide means of processing un-
structured grids via loosely-coupled web services.

Another feature of our data model is nested grid-
fields. In a nested gridfield, attributes associated with
cells need not be numeric values, but can themselves be
gridfields. Nested gridfields can be used to model multi-
resolution datasets or any other hierarchical structure.
In this demonstration, we use nested gridfields to or-
ganize the frames of an animation, and to spatially ar-
range multiple simultaneous visualization on screen.

Client AppData
Repository

Parse and
Optimize

Evaluate

Respond

Web
Server

SOAP
Response

SOAP
Message

Web
Service

Figure 4. Architecture of the web service and client

application.

3. Architecture

Both the server and the client are written in c++,
primarily for efficiency. Individual operators on the
server are compiled separately and linked via mate-
rialized intermediate results. Obviously, this approach
incurs additional IO costs, but it also allows indepen-
dent operations to run on different nodes on a cluster
of computers. We defer sophisticated execution strate-
gies for future work.

Server. Our server is implemented as a web ser-
vice, responding to XML requests and returning XML
responses with a URL to an associated binary payload.
Scientific datasets are usually too large to be translated
into any ASCII representation, and schemes for trans-
porting binary data directly within an XML document
are fraught with problems [6]. Instead, we have cho-
sen to use the Simple Object Access Protocol (SOAP)
[10] for passing messages, but use a separate protocol
to transfer the potentially large query results.

Figure 4 illustrates our architecture. Thick arrows
represent flow of (large) gridded datasets, thin arrows
represent flow of (small) query plans or control infor-
mation. A SOAP request is received from the client
and parsed. Some rudimentary algebraic optimizations
are applied, such as pushing restrictions down the tree.
Then the plan is executed, using pre-compiled query
operators. The output of the query is materialized and
exposed to the Internet. The URL is sent back to the
client, enveloped in a standard SOAP response.

Providing only indirect access to the query re-
sults opens up some interesting processing strate-
gies. Clients might ask for the results to be computed
asynchronously, accessing them at a later time. Fur-
ther, clients could track URLs for computed results
and serve this information to other sub-clients. Obvi-
ously, the lifetime of computed query results cannot
be indefinite, but waiting a day or more before purg-
ing them is not infeasible at our current usage. Devel-
oping full-featured strategies for pre-computing and
caching results is beyond the scope of this work.

GridField Structure Visualization Dimension

“x”, “y”, and “z” attributes Spatial Dimensions
1 non-spatial attribute Color

2 or 3 non-spatial attributes Vector Glyphs
4+ non-spatial attributes Glyphs and Color

Nested Linear Grid Animation
Nested 2-dimensional Grid Screen Layout
2+ innner grids in one cell Superimposition

Table 1. Mapping gridfield structure to visualiza-
tion techniques.

Client. The client application generates visualiza-
tions automatically based on the structure of the grid-
ded dataset being viewed. Visualization systems offer
only a few core dimensions onto which we can map
data. Three spatial dimensions can be visualized, a
fourth dimension can be captured via animation, vi-
sual objects can be colored by a scalar quantity, and
glyphs can be used to visualize 2 or 3 dimensions of vec-
tor data. Tuning these dimensions to convey maximum
information to the viewer is a separate area of research;
we just adopt a few simple conventions that are useful
in practice. Table 1 shows how gridfield structures are
mapped to visualization dimensions. Attribute names
specify spatial dimensions, and extra attributes are in-
terpreted as scalar or vector quantities depending on
how many there are. A linear outer grid is interpreted
as representing time; each inner grid is rendered as a
frame of an animation. A 2-dimensional outer grid al-
lows control of the arrangement of the inner grids on
the screen. Figure 1 illustrates an example of this inter-
pretation. Finally, multiple gridfields can be displayed
in the same visualization if each are associated with
the same cell in an outer grid.

4. Demonstration Specifics

In our demonstration, we will show a form-based in-
terface for expressing queries useful in our domain. The
specific queries to be demonstrated and their associ-
ated visualizations are described below.

3-D Plume Animation. The plume is the jet
of fresh water ejected from the mouth of the river.
Plume dynamics are important for salmon habitabil-
ity studies, commercial fisheries, and basic environmen-
tal physics. The query constructs a nested gridfield:
The outer gridfield is simply time, and the inner grid-
field is a 3-D representation of the plume. Each frame
of the animation displays the portion of the grid where
the salinity attribute is below a given threshold. The
plume is positioned in space by attributes represent-

ing x, y, and z coordinates, and the coloration is de-
termined by the salinity attribute.

2-D Vertical Profile, Two Windows. This data
product displays a vertical profile of the river. The top
and bottom of the image correspond to the surface and
bottom of the river. We use two layers of nesting here:
one for the animation, and another for the arrange-
ment of two windows, each showing a different vari-
able over the same grid. This query uses a technique
to lower the dimension of the intermediate results, and
thereby improve performance [8].

3-D Surface Animation. This data product dis-
plays a 2-D manifold representing the surface of the es-
tuary, warping it in space as the tide ebbs and flows.
Glyphs show velocity vectors, and color shows eleva-
tion, further emphasizing the vertical motion.

References

[1] R. Allan. Building the e-Science Grid in the UK: Mid-
dleware, applications and tools deployed at level 2. In
Proceedings of the UK e-Science All Hands Meeting,
September 2003.

[2] B. Allcock, I. Foster, V. Nefedova, A. Chervenak,
E. Deelman, C. Kesselman, J. Lee, A. Sim, A. Shoshani,
B. Drach, and D. Williams. High-performance remote
access to climate simulation data: a challenge problem
for data grid technologies. InSupercomputing, pages 46–
46. ACM Press, 2001.

[3] W. Allcock. GridFTP Protocol Specification, 2003.
http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-
RFC-Draft.pdf.

[4] A. Baptista, M. Wilkin, P. Pearson, P. Turner, C. Mc-
Candlish, and P. Barrett. Coastal and estuarine fore-
cast systems: A multi-purpose infrastructure for the
columbia river. Earth System Monitor, NOAA, 9(3),
1999.

[5] P. Baumann. A database array algebra for spatio-
temporal data and beyond. In Next Generation Infor-
mation Technologies and Systems, pages 76–93, 1999.

[6] A. Bosworth, D. Box, M. Gudgin, M. Notting-
ham, D. Orchard, and J. Schlimmer. Xml,
soap, and binary data. Technical report,
BEA Systems and Microsoft, February 2003.
www.xml.com/pub/a/2003/02/26/binaryxml.html.

[7] A.Chervenak, I. Foster,C.Kesselman,C. Salisbury, and
S. Tuecke. The Data Grid: Towards an architecture for
the distributed management and analysis of large scien-
tific datasets. Journal of Network and Computer Appli-
cations, 23:187–200, 2001.

[8] B. Howe and D. Maier. Algebraic manipulation of scien-
tific datasets. In VLDB, 2004.

[9] R. Musick and T. Critchlow. Practical lessons in sup-
porting large-scale computational science. SIGMOD
Record, 28(4):49–57, 1999.

[10] W3C. Simple Object Access Protocol (SOAP) 1.2, 2003.
http://www.w3c.org/TR/SOAP.

