
Travel Time Estimation Using NiagaraST and latte
Kristin Tufte

1,2
, Jin Li

1
, David Maier

1
, Vassilis Papadimos

1
, Robert L. Bertini

2
, James Rucker

1

1
Department of Computer Science

Maseeh College of Engineering & Computer Science
Portland State University

Portland, Oregon

2
Department of Civil and Environmental Engineering

Maseeh College of Engineering & Computer Science
Portland State University

Portland Oregon

{tufte, li, vpapad, maier, jgrucker}@cs.pdx.edu, bertini@pdx.edu

ABSTRACT

To address increasing traffic congestion and its associated conse-

quences, traffic managers are turning to intelligent transportation

management. The latte project is extending data stream technol-

ogy to handle queries that combine live streams with large data

archives, motivated by needs in the Intelligent Transportation

Systems (ITS) domain. In particular, we focus on queries that

combine live data streams with large data archives. We demon-

strate such stream-archive queries via the travel-time estimation

problem. The demonstration uses the new latte system which has

been developed using the NiagaraST stream processing system

and the PORTAL transportation data archive.

Categories and Subject Descriptors

H.2.4. Query Processing

General Terms: Performance, Design

Keywords: Data Stream Management Systems, Hybrid Que-

ries, Stream-Archive Queries

1. INTRODUCTION
Traffic congestion, and the associated delay and economic costs it

causes, are a source of significant concern. In the United States

over the past twenty years, vehicle miles traveled for passenger

cars grew 44%, but miles of interstate highway increased less than

8%! In response, transportation departments are moving towards

intelligent transportation management. Much of the data available

for use in intelligent transportation management is in the form of

data streams, such as inductive loop detector data, Automatic

Vehicle Location (AVL) systems on buses, and live traffic signal

data. Further, many metropolitan areas, including Portland, Ore-

gon, are storing these data streams, creating large transportation

data archives. While the goal of the latte project is to apply data

stream management technology to Intelligent Transportation Sys-

tem (ITS) applications, we are developing general technology for

efficient execution of queries combining live data streams and

archived data – stream-archive queries as we call them. The basis

for latte is the NiagaraST stream-processing system.

Computing real-time transportation metrics is an important piece

of intelligent transportation management. In particular, the Fed-

eral Highway Administration (FHWA) has put a high priority on

municipalities providing travel time information. The latte pro-

ject has access to the live stream of freeway data that PORTAL

receives from the Oregon Department of Transportation (ODOT)

as well as the PORTAL transportation data archive, which has

been archiving ODOT freeway detector data as well as other

transportation-related data for over two years [1]. In our demon-

stration, we show how stream-archive queries can be used to im-

prove travel-time estimation for the Portland region. The stream-

archive queries run over a re-played stream of ODOT freeway

data and data form the PORTAL archive. The demonstration will

show the execution of stream-archive queries, will display travel-

time estimates and the expected variability in those estimates, and

will visually depict how different methods of accessing the data

archived affect data access patterns in the archive and the accu-

racy of answers.

2. STREAM-ARCHIVE QUERIES
Data-stream researchers have developed technology for efficiently

processing queries over data streams – for executing window que-

ries, for handling bursts and lulls in the inputs and so on; how-

ever, limited attention has been given to combining data from

large data archives with live streams. (We note that accessing data

from an archive is a different problem from conveying data to an

archive.) We begin by discussing the travel-time-estimation prob-

lem and then discuss issues involved in effectively accessing a

large data archive.

2.1 Travel-Time Estimation
Accurate travel-time estimates have shown value for drivers in

cities around the United States. Travel time estimates are provided

by transportation departments to drivers via Variable Message

Signs on highways as well as via the Internet and telephone ser-

vices. In addition to current estimated travel times, it is also im-

portant to provide travel-time reliability. For example, if one

wishes to be sure to arrive at a destination on time, knowing that

travel time is less than 15 minutes with a 90% probability is per-

haps more important than knowing that the expected travel time is

10 minutes. Current travel-time estimates are best done using a

combination of live and archived data; further historical data is

required for estimating travel-time reliability.

2.2 Corresponding Periods
To estimate travel times and their reliability, we wish to compare

and combine live data with archived data from “similar” time

periods in the past. While this demonstration focuses on travel-

time estimation, we believe that the concept of comparing current

data to “similar” historical data is applicable to many applications.

As a simple example, we might estimate travel times by using a

combination of today’s data and data from the previous ten Tues-

Copyright is held by the author/owner(s).

SIGMOD’07, June 11–14, 2007, Beijing, China.

ACM 978-1-59593-686-8/07/0006.

days (assuming today is a Tuesday). In this case, we define similar

as “the past ten Tuesdays”; however, many other definitions of

similarity may be applicable: same time of year, same weather

conditions, same traffic conditions. We define a corresponding

period to be a past period that is similar (by some definition) to

the current time period. An important aspect of similarity is that it

can depend on current data values in the live stream. That is, we

will not know statically in advance what we want to retrieve out

of the archive – rather, we must examine the current data to de-

termine which pieces of the archive are relevant. We consider

below some likely notions of similarity that impose challenges for

retrieving archive data for corresponding periods.

Structural Similarity: A structural definition of similarity is based

on some aspect that correlates to the archival data organization, in

our case, likely by time or road segment. Thus similarity defini-

tions based on some offset in time – same day of week, same

month last year – will result in corresponding periods that are

contiguous spans at predetermined intervals in the archive.

Metric-Based Similarity: For near-term predictions, we may want

to find periods that are similar under metrics suggested by traffic-

flow theory. For example, we might judge two time periods to be

similar based on the demand—measured in Vehicle Miles Trav-

eled (VMT) in a road segment—or on the time since the onset of

congestion (characterized by the combination of vehicle density

and speed).

Similarity Based on External Conditions and Events: Some no-

tions of similarity may not depend on directly on the content of

data in the period of interest, but rather on associated conditions

or events. For example, we might want periods similar in terms of

weather conditions, level of daylight or incident occurrence.

2.3 Archive Access
The definitions of corresponding periods above need different

types of archive access. Structural similarity requires fairly regular

and predictable (though dynamic) access to a set of data. Metric-

based similarity and similarity based on external conditions have

less regular access patterns. If we expect to support many stream-

archive queries at once, the archive access must be efficient.

An obvious way to execute stream-archive queries is to issue a

query to the archive for every tuple or group of tuples that arrives

on the stream. Such a strategy may be successful for estimating a

single travel time for a single route, but is not expected to scale. In

the demonstration, we will visually show the effect of different

definitions of similarity on archive access.

Porthole Scans: We have developed the “porthole scan” approach

to support archive window scans of corresponding periods, ini-

tially based on structural similarity.

We explain with an example—consider a query that compares

windowed vehicle counts over live traffic data to average window

counts of the same time and day over the past four weeks to de-

termine how much better or worse traffic is than usual. Say today

is Friday. To execute this query, we open one “porthole” (scan

point in the archive) for each of the most recent four Fridays.

Each porthole produces a sequence of windowed counts that are

averaged and then joined with windowed counts from the live

stream. Note that the “stream” of average window counts from the

archive must be synchronized with the stream of windowed counts

from the live stream.

Using our execution strategy, a stream-archive query is divided

into a porthole scan plus a stream query that combines the results

with the live data stream. Among the issues we are addressing:

deriving appropriate porthole scans from a stream-archive query,

dividing query processing between porthole sub-queries and the

stream query, architecting and optimizing porthole queries to

minimize resource usage while producing data at a specific rate,

and synchronizing porthole queries with the live streams.

Persistent Panes: It is infeasible in general to pre-compute and

store aggregates over corresponding periods to support archive

window scans, if different queries are using a different definition

or number of similar periods. However, we can pre-compute and

store sub-aggregates (“persistent panes”) over the archive that can

support several different window archive scans. While this ap-

proach reduces computational costs, it does add complexity. For

example, we must deduce if and how an aggregate can be con-

structed from persistent panes.

3. SYSTEM DESCRIPTION
The latte system combines the NiagaraST stream processing sys-

tem and the PORTAL data archive.

NiagaraST: NiagaraST is a stream query engine that extends the

Niagara Internet query system developed at the University of Wis-

consin [3]. NiagaraST inherits Niagara’s system architecture and

query execution model, extending it to support stream processing

by introducing punctuations and windowed operators. Punctua-

tions [4] unblock blocking operators and limit the state that state-

ful operators must maintain. Windowed operators in NiagaraST

use our WID window semantics [2]. NiagaraST does not require

that stream order be enforced or maintained, but rather leverages

punctuation in query operators to track stream progress. We term

this approach out-of-order processing (OOP). We have shown

that OOP outperforms the standard in-order approach in terms of

execution time, memory usage and latency [2].

PORTAL: PORTAL (Portland ORegon Transportation Archive

Listing) [1] is the official archive of transportation data for the

Portland metropolitan region. PORTAL receives a live stream of

data from ODOT, with speed, count and occupancy data for free-

ways around Portland, which it has archived since July 2004.

PORTAL also archives weather and traffic-incident data and

stores its data in a PostgreSQL database. PORTAL provides a

web site that provides traffic metrics for use by transportation

planners, managers and researchers.

latte: The latte system combines NiagaraST with the PORTAL

archive. We modified NiagaraST so that queries over the POR-

TAL database can be used as input to a NiagaraST query. Further,

NiagaraST connects to the live ODOT data stream, so that it can

process queries that combine the live stream and the data archive.

4. DEMO DESCRIPTION
We demonstrate stream-archive query processing in latte using

the travel-time-estimation problem. We show dynamic travel-time

estimation for a freeway network, including estimates of travel

time variability. We show the queries that are used to access the

archive and visually demonstrate archive access patterns.

Our demonstration uses three types of data: a re-played data

stream, the PORTAL database and probe vehicle data. Demon-

stration times in Beijing will be low traffic times in Portland, so

we will re-play a live stream that PORTAL has received from

ODOT. Probe vehicle data are records of actual cars’ positions as

they travel a roadway. By incorporating such data into our demo,

we can compare our estimates with the actual travel of the probe

vehicle, indicating the accuracy of our predictions.

Our demo has two primary components: display of travel-time

estimation and visualization of data access patterns in the archive.

4.1 Display of Time Estimates
Figure 1 displays a similarity selector and a comparison of travel

time estimates on the freeway network in the Portland metropoli-

tan region. The selector allows the user to choose between a vari-

ety of similarity measures. The map displays a comparison be-

tween the current travel times and the travel times estimated using

the selected “similar” historical data. In Figure 1, current travel

times are being compared with travel times on the five most recent

weekdays.

4.2 Visualization of Data Access on the Server
Our demonstration will present a visualization of archive access

patterns, to show the effects of different similarity definitions,

multiple queries, and different access strategies.

Archived loop-detector data can be visualized using a 2-D grid,

with the axes being time and detector location (which correlates

with the current physical layout of the data). As data is accessed

in the database, squares in the grid are highlighted. Figure 2

shows an example of such a visualization. Each square represents

data from a particular sensor over a 5-minute time period. Colored

squares indicate recent data access, with darker shades being the

most recently accessed. In Figure 1, we show estimates for travel

times for multiple highways; this is indicated in Figure 2 by the

two different sections of sensors being accessed. Further, sensor

access is not necessarily consecutive as sensor numbers may not

be consecutive along a route. Finally sensors may be numbered

backwards.

5. ACKNOWLEDGMENTS
The authors of this paper gratefully acknowledge ODOT for pro-

viding us with access to their data and Dennis Mitchell and Jack

Marchant, in particular, for their invaluable assistance. This work

is supported by NSF Awards (grant number IIS 00-86002 and IIS

06-12311) and NSF CAREER Award (grant number 0236567).

6. REFERENCES
[1] Bertini, R.L., Matthews, S., et al. “ITS Archived Data User

Service in Portland, Oregon: Now and Into the Future.” 8th

International IEEE Conference on Intelligent Transportation

Systems, Vienna, Austria, September 13-16, 2005.

[2] Li, J., Maier, D., Tufte, K., Papadimos, V. Out-of-Order

Processing in the NiagaraST Stream System.

http://www.cs.pdx.edu/~jinli/oop.pdf

[3] Naughton, J., DeWitt, D., Maier, D. et al. The Niagara

Internet Query System. IEEE Data Engineering Bulletin

24(2):27-33 (2001)

[4] Tucker, P., Maier, D., et al. Exploiting Punctuation Seman-

tics in Continuous Data Streams. Transactions on Knowl-

edge and Data Engineering, 15, 3 (May 2003).

Sensor Number

4:00

Tue

5:00

6:00

4:00

5:00

Fr

Figure 2 Visualization of Archive Data Access
Figure 1 Display of Travel-Time Estimates

