NEXMark — A Benchmark for Queries over Data
Streams
DRAFT

Pete Tucker, Kristin Tufte, Vassilis Papadimos, David Maier

OGI School of Science & Engineering at OHSU
{ptucker,tufte,vpapad,maier } @Qcse.ogi.edu

1 Introduction

A lot of research has focused recently on executing
queries over data streams. This recent attention is due
to the large number of data streams available, and the
desire to get answers to queries on these streams in real
time. There are many sources of data streams: envi-
ronmental sensor networks, network routing traces, fi-
nancial transactions and cell phone call records. Many
systems are currently under development to execute
queries over data streams [BW01, CCCT02, MF02,
NDM™00, SH98]. Further, many ideas have been pre-
sented to improve the execution of queries over data
streams [ABB102, MSHR02, TMSF02]. It is impor-
tant to be able to measure the effectiveness of this
work. To this end, we present the Niagara Extension
to XMark benchmark (NEXMark).

This is a work in progress. We are circulating it
now for feedback. We have three goals: To define a
benchmark, to provide stream generators, and to de-
fine metrics for measuring queries over continuous data
streams.

The XMark benchmark [SWKT01] is designed to
measure the performance of XML repositories. The
benchmark provides a data generator that models the
state of an auction in XML format, and various queries
over the generated data. An abbreviated schema for
XMark is shown in Figure 1.

2 Adapting XMark to Streaming Data

The XMark scenario can realistically be extended to
an on-line auction system such as EBay [EBA] using
data streams. In an on-line auction, hundreds of auc-
tions for individual items are open at any given time.
New people are continuously registering with the sys-
tem. New items are continuously submitted for auc-
tion. Bids are continuously arriving for items. Based
on these continuous actions, it is easy to imagine three
kinds of data streams passing data into the main auc-
tion system. In the NEXMark scenario, we use three
kinds of business objects. Each kind of business ob-

closed_auction
item
—)
price
description date
name | |
open tuction person category
€ >
initial name name
initial ; »
| | emailaddress description
reserve credit_card
* city
state

—]

increase |
date

Figure 1: Abbreviated Conceptual Schema for XMark
Auction Data

ject represents different interactions users have with
the auction, as follows:

e All users register with the Person business ob-
ject in order to participate in auctions as buyers
or sellers. The Person business object streams
the registration information into the main auction
system.

e Sellers submit items they want to sell to the
Auction business object. Information about the
item includes description, reserve, start and end
time for the auction, and quantity. The descrip-
tion and quantity of the item is streamed to the
main system as a item entity. The reserve and
start and end time are streamed to the main sys-
tem as open_auction entity to begin the auction.
When the auction expires, the Auction business
object signals the close of an auction to the main
system using a close_auction entity.

e Buyers enter bids for existing auctions to the Bid
business object. Each bid is streamed from the
business object into the main system. There may
be more than one Bid business object deployed,
depending on the scale of the test. Scaling is dis-
cussed further in Section 4.2.

Additionally, a static file is stored on disk. This
file contains data, such as category information, which
changes infrequently and is not presented as a stream.
The NEXMark architecture is shown in Figure 2.

There are many interesting queries that users would
want to execute in this kind of system. These queries
might be over data from single business objects, over
joins or unions over data from multiple business ob-
jects, and over joins over data from business objects
with stored data.

Stored
Auction Data

Online Auction
System

Figure 2: Architecture for the On-line Auction System

Though the NEXMark benchmark extends XMark,
we do not intend for NEXMark to be strictly for XML
data streams. It can be implemented using data in
any format. A simplified version of the schema for
the NEXMark benchmark is shown in Figure 3. The
category entity allows sellers to categorize their items
in the auction hierarchically. Users can then set up
watch lists for new auctions on items in specific cate-
gories.

We need to make some changes in the XMark
schema to facilitate the new streams and business ob-
jects. These changes are listed below:

e XMark represents bid prices as increases over the
previous price. This representation is easy to gen-
erate, but not realistic if bids are arriving in dif-
ferent streams from different servers. Therefore,
the Bid business object will generate bid entities
which include the actual bid price.

e The closed_auction entity comes from the
Auction business object. The Auction business
object does not know the closing price for the
item in the auction, so it is not included. The

- closed_auction
item
o date
description
name
open_auction person category
initial name name
reserve emailaddress description
expires credit_card
city
4 state
bid T
price |
date

Figure 3: Abbreviated Schema for NEXMark Auction
Data

closed_item entity only contains the closing date
and buyerid for the auction.

3 Queries

The NEXMark benchmark addresses what we call
Stream-In, Stream-Out queries. Stream-In, Stream-
Out queries are continuous queries that take as input
a stream, or streams, of data, perform operations on
the stream(s) and produce a stream of data as output.
An example simple Stream-In, Stream-Out query is:
given an input stream of bids, output all bids on a
particular set of items.

Two interesting classes of queries over streams that
are not addressed by this benchmark are triggers
and ad-hoc queries. Triggers differ from Stream-In,
Stream-Out queries in that triggers perform an ac-
tion based on the results of a query, while Stream-In,
Stream-Out queries only produce results. In addition,
we envision that Stream-In, Stream-Out queries will
have a more continuous output stream than traditional
trigger queries, which may fire only irregularly. Ad-hoc
queries over streams are one-time queries which are
answered based on the “current state” of the stream.
An example ad-hoc query is: get the current price for
the item with id 5120. While both of these classes of
queries are important, in order to keep the benchmark
focused, we do not include these types of queries. We
proceed to describe the queries in the benchmark.

3.1 Queries in NEXMark

This section describes the queries that make up the
NEXMark benchmark. We express the queries in SQL,
since SQL has been widely adopted; however SQL is
not a requirement for the system. There are eight

queries in the benchmark, the second four are window
queries.

Before we describe the queries in the benchmark,
we make a note on benchmark scaling. As described
in Section 4.2, larger scale NEXMark implementations
will be required to process multiple bid streams. For
simplicity, all the queries are expressed using a single
bid stream (relation). For higher-scale implementa-
tions, this single bid stream (relation) is presumed to
be the union of the multiple input bid streams.

3.2 Query 1- Query 4

Query 1 Currency Conversion

The purpose of Query 1 is to test the processing
speed of the stream system and to provide a reference
point for the rest of the queries. One essential feature
tested by Query 1 is parse speed. Parse speed is par-
ticularly important in stream systems because stream
systems operate on data that is not in native database
format and reading such data can be slow. Query 1
takes an incoming bid stream and converts the prices
of the bids from U.S. dollars to Euros.

SELECT itemid, DOLTOEUR(price),
bidderId, bidTime
FROM bid;

DOLTOEUR is a function which takes a price in
dollars and converts it to Euros.

Query 2 Selection

Query 2 selects all bids on a set of five items and
tests the stream system’s selection operation.

SELECT itemid, price

FROM bid

WHERE itemid = 1007 OR
itemid = 1020 OR

itemid = 2001 OR
itemid = 2019 OR
itemid = 1087;

Query 3 Local Item Suggestion

Query 3 is designed to test join functionality. We
imagine that buyers want to find items in a particu-
lar category that are for sale by sellers who live near
them. Query 3 performs a join between the stream of
new items for auction and the people registered with
the auction system. The query should output a result
every time a new item becomes for sale in category
10 in Oregon. Note that the result should not con-
tain items that are no longer up for auction (closed
auctions).

SELECT person.name, person.city,
person.state, open_auction.id

FROM open_auction, person, item

WHERE open_auction.sellerId = person.id
AND person.state = ‘OR’
AND open_auction.itemid = item.id
AND item.categoryld = 10;

Query 4 Awverage Price for a Category

Users who are considering selling an item want to
know the average closing price for other items in that
category. The category data is stored in a static file
known by the system. Query 4 joins the category file
with the closed_auction stream to calculate average
closing price for each. The query should output up-
dated prices when new closing prices arrive for a par-
ticular group.

SELECT C.id, AVG(CA.price)
FROM category C, item I, closed_auction CA
WHERE C.id = I.categoryld
AND I.id = CA.itemid
GROUP BY C.id;

3.3 Query 5 - Query 8 - Window Queries

The last four queries in the benchmark are window
queries; three are window group-bys and one is a win-
dow join. We have taken care to use various types
of windows in the benchmark including sliding and
fixed windows and time-based (logical) and event-
based (physical) windows. The windows are specified
using SQL-99 style specifications as proposed by Bab-
cock et al. [BBD102]. The keyword RANGE is used
to express time-based (logical) windows - for example,
the average price of all bids in the last ten minutes.
The keyword ROWS is used to express event-based
(physical) windows - for example, the average price of
the last ten bids.

Query 5 Hot Items

This query selects the item with the most bids in
the past one hour time period; the “hottest” item.
The results are output every minute. This query uses
a time-based, sliding window group by operation.

SELECT bid.itemid
FROM bid [RANGE 60 MINUTES PRECEDING]
WHERE (SELECT COUNT(bid.itemid)

FROM bid [PARTITION BY bid.itemid

RANGE 60 MINUTES PRECEDING])
>= ALL (SELECT COUNT(bid.itemid)
FROM bid [PARTITION BY bid.itemid
RANGE 60 MINUTES PRECEDING];

Please correct us if we have this syntax wrong.
Query 6 Awverage Selling Price by Seller

Query 6 calculates, for each seller, the average sell-
ing price of items sold by that seller. For example, auc-
tion site administrators may be interested in knowing
which users sell the highest price items. This query
uses an event-based, sliding window group by.

SELECT AVG(CA.price), CA.sellerId
FROM closed_auction CA

[PARTITION BY CA.sellerld

ROWS 10 PRECEDINGI;

Query 7 Highest Bid

Query 7 monitors the highest price items currently
on auction. Every ten minutes, this query returns the
highest bid (and associated itemid) in the most re-
cent ten minutes. This query uses a time-based, fixed-
window group by. The syntax FIXEDRANGE is used
in place of RANGE to indicate that the highest bid
should be evaluated every ten minutes instead of over
a sliding ten minute window.

SELECT bid.price, bid.itemid
FROM bid where bid.price =
(SELECT MAX(bid.price)
FROM bid [FIXEDRANGE
10 MINUTES PRECEDING]);

Query 8 Monitor New Users

This query finds people who put something up for
sale within twelve hours of registering to use the auc-
tion service. This query could be used to track new
users for user followup or to make sure the new users
are “behaving”. This query uses a sliding window join
over a logical or time-based window.

SELECT person.id, person.name

FROM person [RANGE 12 HOURS PRECEDINGI],
open_auction [RANGE 12 HOURS PRECEDING]

WHERE person.id = open_auction.sellerld;

4 NEXMark Implementation
4.1 Firehose Stream Generator

We are in the process of developing the Firehose
Stream Generator (FSG) to simulate the output from
the business objects required for this benchmark. The
FSG will be configurable to output new persons, bids
for items, and auctions that have opened and closed.

Additionally, the firehose will be configurable to out-
put data at specific stream rates. The number of
streams required and the stream rate is determined
by the testing scale, described below.

4.2 Scale

It is desirable to allow for different levels of scaling in
the system. Scaling in the NEXMark system is based
on the size of the checkpoint file, the number of bid
streams, the rate of the bid streams, and the duration
of the test. We will define three scale levels: small,
medium, and large.

e Static file size The static file contains static data
that will to be queried along with data from the
streams. The static file contains data that is per-
manent or at least semi-permanent such as the
category list. A larger file may take longer to
query against, making it more difficult to handle
faster input stream rates.

e Number of bid streams As the system gets
larger, there will be more items to bid on, and
more bids coming into the system. Large-scale
systems must execute over more bid streams than
small-scale systems.

e Stream Rate The rate of the item stream is one
tenth the rate of the bid stream, and the rate
of the person stream is one tenth the rate of the
item stream (one one-hundredth the rate of the
bid stream). The stream rate for large-scale sys-
tems will be faster than that of small-scale sys-
tems.

e Test duration This benchmark is intended for
systems that execute queries over continuous data
streams. However, in order to accurately compare
the test results for many systems, we define a du-
ration for the execution of the test. Large-scale
systems will be required to run longer than small-
scale systems.

5 Metrics

Measuring a system that queries continuous data
streams is not a straightforward task. Traditionally,
DBMS benchmarks measure the length of time to ex-
ecute a query. We cannot apply this scheme to data
stream query systems, since the input is continuous
and theoretically the queries never end.

The most important things to measure about a
stream system are: how fast can the system process
data? and how accurate are the results? The accu-
racy measurement is important because as the input
rate increases, a system may have to drop tuples or
take other measures to keep up with the input. This
behavior is acceptable, and will result in approximate

answers. It is important to measure just how accurate
the approximate answers are.

With these ideas in mind, we propose two metrics:
Input Stream Rate and Output Matching. These two
values should be reported together. For example, one
would say System X ran at Y accuracy at Input Stream
Rate of Z MB/sec. Input Stream Rate is straightfor-
ward; below we discuss Output Matching further. Fi-
nally, we touch on Tuple Latency which is the metric
we are using in our current experiments.

5.1 Output Matching

Output matching is a combined metric of output time-
liness and accuracy in Stream-in, Stream-out queries.
For an example, we use the following query which out-
puts the current price of a particular item for auction.

SELECT bid.price
FROM bid
WHERE bid.itemid = 5192;

Used as a Stream-in, Stream-out query, this query
outputs a new price each time a new bid on item 5192
arrives. We assume, only for this example, that bids
come in order of increasing price. Thus the output
stream will be a series of increasing prices for item
5192. This is a very simple query, but serves well as
an illustration.

In this example query, the input is a stream of bid
prices by, ba, ..., b, for some item, coming in at times
t1, ta, ...,tn. To implement Output Matching, we
assume an ideal stream database which operates with
infinite speed and accuracy. This ideal system outputs
an updated price for the item instantly when the new
bid arrives. Any actual implementation, however, will
introduce some processing delay d;, and will output the
price corresponding to bid increase b; at time t; + d;.

We can plot a graph of the output values vs. time
for the ideal system and for an implementation. Figure
4 shows such a graph. In this graph, the ideal system
is represented by the solid line, the implementation by
the dotted line. The Output Matching metric is the
value of the area between the two lines (shown as a
shaded area in Figure 4) normalized by time. This
shaded area can be interpreted as an indication of the
timeliness and accuracy of the results. The slower and
less accurate the implementation is, the more space
there will be between the solid and dotted lines and
the higher the value of the Output Matching metric,
as desired.

We feel the Output Matching metric is a good
method for measuring the timeliness and accuracy of
a stream system. It is clear that the Output Matching
Metric can be used for queries, such as the example
query, which have a numerical result. We can gener-
alize output matching to cover not just queries with

ordered output domains (such as money, in this ex-
ample), but most stream-in, stream-out queries with
a notion of a “current result”. All that is required is a
function which given two possible query results returns
a numeric value representing how “different” those re-
sults are. In the worst case, this degrades to a 0 if the
two results are the same and 1 if they are different.
However, typically a more satisfying function can be
used.

mismatch=output difference x processing delay

Price

Time

Figure 4: Output Matching for Example Query

5.2 Tuple Latency

In our current experiments, we use the Tuple Latency
metric. Tuple Latency does not take into account ap-
proximate results and is therefore not as good as Out-
put Matching, but it is easier to measure and provides
a good starting point. Tuple Latency is the measure
of how long it takes for a tuple that is relevant to the
result to go through the system.

6 Conclusion

There are a number of systems being developed
that execute queries over continuous data streams.
We propose an extension to the XMark benchmark,
called NEXMark, to measure the effectiveness of these
stream querying systems. The extension is straightfor-
ward and realistic. We define queries, and provide a
source for the data streams and a client to accept out-
put from the system and report benchmark results.

We are trying to represent applications that execute
queries over streams of event data with this bench-
mark. These applications execute filter queries, aggre-
gate queries, and join queries over incoming streams
as well as stored data.

References

[ABBT02] Arvind Arasu, Brian Babcock, Shiv-
nath Babu, Jon McAlister, and Jennifer
Widom. Characterizing memory require-
ments for queries over continuous data
streams. In Proceedings of the 21°¢

[BBD*02]

[BWO1]

[CCCH02]

[EBA]
[MF02]

[MSHR02]

[NDM+00]

[SHOS]

[SWK*01]

ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems
(PODS), pages 221-232, June 2002.

Brian Babcock, Shivnath Babu, Mayur
Datar, Rajeev Motwani, and Jennifer
Widom. Models and Issues in Data Stream
Systems. In Proceedings of the 21°¢ ACM
Symposium on Principles of Database Sys-
tems (PODS 2002), June 2002, Madison,
WIL

Shivnath Babu and Jennifer Widom. Con-
tinuous queries over data streams. SIG-
MOD Record, 30(3), September 2001.

Don Carney, Ugur Cetintemel, Mitch
Cherniack, Christian Convey, Sangdon
Lee, Greg Seidman, Michael Stonebraker,
Nesime Tatbul, and Stan Zdonik. Moni-
toring streams — a new class of data man-
agement applications. In Proceedings of
the 28" Conference on Very Large Data
Bases, August 2002.

eBay home page. http://www.ebay.com/.

Samuel Madden and Michael J. Franklin.
Fjording the stream: An architecture for
queries over streaming sensor data. In Pro-
ceedings of the 18" International Confer-
ence on Data Engineering, pages 555-566,
February 2002.

Samuel Madden, Mehul Shah, Joseph M.
Hellerstein, and Vijayshankar Raman.
Continuously adaptive continuous queries
over streams. In Proceedings of the ACM
Special Interest Group on Management of
Data, pages 49-60, June 2002.

Jeffrey Naughton, David DeWitt, David
Maier, Jianjun Chen, Leonidas Galanis,
Kristin Tufte, Jaewoo Kang, Qiong Luo,
Naveen Prakash, and Feng Tian. The Nia-
gara query system. Technical report, Uni-
versity of Wisconsin, March 2000.

Mark Sullivan and Andrew Heybey.
Tribeca: A system for managing large
databases of network traffic. In Proceed-
ings of the 1998 USENIX Annual Techin-

cal Conference, June 1998.

Albrecht Schmidt, Florian Waas, Mar-
tin Kersten, Daniela Florescu, loana
Manolescu, Michael J. Carey, and Ralph
Busse. The XML benchmark project.
Technical Report INS-R0103, Centrum
voor Wiskunde en Informatica, April 2001.
http://monetdb.cwi.nl/xml.

[TMSF02] Pete Tucker, David Maier, Tim

Sheard, and Leonidas Fegaras. En-
hancing relational operators for
querying over punctuated data
streams. manuscript, 2002. URL:
http://www.cse.ogi.edu/dot /niagara/
pstream/punctuating.pdf.

