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Abstract. What does a data stream mean? Much of the extensive work
on query operators and query processing for data streams has proceeded
without the benefit of an answer to this question. While such impreci-
sion may be tolerable when dealing with simple cases, such as flat data,
guaranteed physical order and element-wise operations, it can lead to
ambiguities when dealing with nested data, disordered streams and win-
dowed operators. We propose reconstitution functions to make the de-
notation and representation of data streams more precise, and use these
functions to investigate the connection between monotonicity and non-
blocking behavior of stream operators. We also touch on a reconstitution
function for XML data. Other aspects of data stream semantics we con-
sider are the use of punctuation to delineate finite subsets of a stream,
adequacy of descriptions of stream disorder, and the formal specification
of windowed operators.

1 Introduction

Data streams arise in many application domains, such as sensor processing, net-
work monitoring and financial analysis. Streams from different domains could
mean quite diverse things: a discrete signal, an event log, a combination of time
series. Most work on algorithms and architectures for data stream management,
however, never defines what a stream means. Thus it is hard to judge whether
the definition of a particular stream operator is sensible. The default seems to
be that a stream operator should behave like the pipelined version of a rela-
tional operator, but that may be inappropriate if the stream denotes something
other than an unbounded relation, or if the representation the stream uses is
different from the usual serialization of a finite table. When new operators are
introduced, such as windowed versions of group-by and join, the situation be-
comes even fuzzier, especially if the semantics of the operator depends on the
physical presentation order of items in the data stream.

In this paper, we propose reconstitution functions as a means to make precise
the denotation and representation of a data stream. A reconstitution function is
applied incrementally to prefixes of a stream to give successive approximations
of its denotation. While generally we do not expect to actually apply a recon-
stitution function to a stream, it is useful in specifying the correct behavior of
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a stream analogue of an existing operator over the denotation domain. Recon-
stitution functions also prove useful in examining the subtle interplay between
monotonicity and non-blocking behavior in stream operators.

We also consider additional semantics that may be available about the content
or physical presentation of data streams, and discuss stream punctuation as one
means to make such additional information available to stream operators and
queries. One aspect we cover at more length is disorder in data streams. We
explore some of the existing proposals for describing the expected disorder in a
data stream. From our own investigations of disorder, we point out two areas
in which disorder descriptions could be enhanced, namely non-uniform disorder,
and statistical distributions of item displacement.

Our final topic is the semantics of windowed operators: operators that ma-
nipulate a data stream by decomposing it into a sequence of finite subsets and
processing each subset in turn. Many such operators are defined in operational
terms, which can make them sensitive to the physical presentation order of a
stream. We propose a formal semantics for window definition that appears able
to capture the underlying semantics of almost all window operators proposed
to date. That semantics is independent of the physical order of a stream, and
hence can describe the expected behavior of a window operator in the presence of
disorder, and also leads to operator implementations with no internal buffering.

2 Stream Denotation and Representation

As we pointed out in the introduction, the proper interpretation of a stream
might vary from application to application, but papers on data streams do not
always make clear what interpretation they use. Even where the interpretation
is provided, it can be somewhat confusing. For example, Law et al. [LWZ04]
view data streams as “bags of append-only ordered tuples,” or, alternatively,
as “unbounded append-only bags of elements” when there is an explicit times-
tamp associated with each tuple. Such definitions conflate the kind of structure
a stream denotes (an unbounded sequence?) with a particular representation
(tuples with timestamps) with the function for recovering one from another (ap-
pend). There are several questions left unanswered here. Are the timestamps
considered part of the content of stream items — and thus, for example, avail-
able in selection conditions — or do they simply serve to define an order on the
stream? Is the order total, or can two tuples have the same timestamp? Might
the bag of tuples be viewed as a set by ignoring duplicates? The answers to
such questions are important in evaluating whether or not a proposed stream
operator is reasonable.

We think it important to distinguish the denotation of a stream from the par-
ticular representation of the denotation that the stream uses. The denotation is
an abstract interpretation of what the stream means as a mathematical struc-
ture in some domain, whereas the representation is a particular encoding being
used for elements of that domain. For example, a stream might be viewed as
denoting a sequence of (finite) relation states over a common schema R : [r1(R),
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r2(R), r3(R), . . . ]. Let us assume for concreteness that the individual relations
are unordered sets. There are many ways a stream could represent such a relation
sequence:
(a) as the concatenation of serializations of the ri (similar to the Rstream func-

tion of CQL [AW04R]);
(b) as a list of tuple-index pairs, where 〈t, j〉 indicates t ∈ rj ;
(c) as a serialization of r1, followed by a series of “delta” tuples that indicate

updates to make to obtain r2, r3, etc.;
(d) as a “replacement sequence,” where some attribute A is treated as a key,

and arriving tuple t replaces any existing tuple with the same t(A)-value to
form a new relation state;

(e) as a “broadcast disk” format [AA95], where the state of a single ri might be
repeated multiple times;

(f) as an “overlapped window” encoding, in which each subsequence of 50 tuples
represents a relation state in the sequence.

Clearly there are many other possible representations and variants for the
relation-sequence denotation. Properly reflecting the behavior of an operation
from the denotation domain in a stream operator requires consideration of
the representation being used. Consider, for example, component-wise selection.
That is, the desired outcome is [σC(r1), σC(r2), σC(r3), . . . ] for some selection
condition C. For representations (a) – (e), one can apply the condition C individ-
ually to the items in an input stream S to get an output stream that represents
the result. (There may be issues with representation (a) if σC selects away all
tuples in some ri, depending on how successive serializations are delimited.)
However, applying C itemwise to a stream using representation (f) will not give
the correct result, unless the output stream adopts a different representation.

As another example, consider a stream of sensor readings from, say, a tem-
perature probe. We might view such a stream as denoting a discrete signal with
a regular sampling rate (which in turn approximates a continuous physical mea-
surement in the environment). A temperature stream might represent such a
signal in several different ways:
(a) as a sequence of readings, one for each sampling point;
(b) as a sequence of changes in temperature from the previous sampling point;
(c) as a sequence of reading-timestamp pairs, with a pair included only if the

reading differs from the previous reading included.

Representation (c) might be desirable for logistical considerations, such as
power conservation, but it may require care in implementing certain operations.
For example, if the average of two signals is the desired output, one needs to
deal with the situation where there are long pauses in one stream because the
temperature has not changed.

We also note that a single data stream might be viewed more than one way.
That is, it can be construed with different denotations by interpreting it using
different representations. Consider a stream of stock-trade items of the form
<ticker, time, shares, price>. We can consider this stream as denoting a
relation sequence, using the replacement-sequence representation (a) above with
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ticker as the key. Each item in the stream produces a new relation state in
the sequence. An alternative view is that the trade stream denotes a relation
sequence of recent trades, using representation (f) above. A third interpretation
is that the stream denotes a collection of time series of prices, one for each
different stock. Each item in the stream extends one of these time series. Observe
that conversions between these different denotation values might be a no-op on
the stream itself — just a change in the representation used to interpret it.

3 Reconstitution Functions

The notions of denotation and representation are useful for thinking about the
semantics of a given stream, but are not necessarily precise enough yet for use
in proofs of operator correctness or query equivalence. As a practical matter,
the denotations we have used as examples are potentially infinite structures
giving meaning to a whole stream, whereas there is a general desire to treat
streams incrementally. We thus propose reconstitution functions as a mechanism
for expressing and reasoning about stream semantics and representations. One
can view a reconstitution function as constructing successive approximations to
the denotation of a stream from successive finite prefixes of that stream. Consider
streams with items of type T, and let D be the desired domain of interpretation.
A reconstitution function reconst for type stream(T) will map each prefix P
(of type sequence(T)) of a stream into D: reconst(P) = d ∈ D. We give some
example reconstitution functions below.

The Insert Reconstitution Function: If the domain of interpretation is
bag(T), then a reconstitution function ins that starts with an empty bag and
inserts each successive stream item is appropriate:

ins([]) = ∅

ins(P : i) = insert(i, ins(P )).

Here we use [] for the empty sequence, and P : i to denote sequence P extended
by item i.

The Insert-Unique Reconstitution Function: If the intended domain of
interpretation for a stream is set(T), then we can define a reconstitution function
insu that checks for duplicates:

insu([]) = ∅

insu(P : i) = if i �∈ insu(P ) then insert(i, insu(P )) else insu(P ).

The Insert-Replace Reconstitution Function: Here we assume that each
item in the stream has a component A that is treated as a key, and define a
reconstitution function insr that guarantees only the most recent item with a
given key is included:

insr([]) = ∅

insr(P : i) = insert(i, {j | j ∈ insr(P ) ∧ j.A �= i.A}).
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The Insert-Replace-Collect Reconstitution Function: The insr reconsti-
tution function yields the final state resulting from applying all the items in the
stream. If the desired domain of interpretation is sequences of states (that is,
type sequence(set(T))), similar to the relation-sequence example of Section 2,
we can use the insrc reconstitution function to collect successive states:

insrc([]) = []
insrc(P : i) = insrc(P ) : insr(P : i).

Remarks:

1. All the examples of reconstitution functions above are incremental : Each
can be cast in the form reconst(P : i) = g(reconst(P ), i) for some function
g. We do not require this property for a reconstitution function, but it may
prove to have useful consequences. However, there are situations where a
non-incremental reconstitution function is called for. For example, for some
of the representations for relation sequences in Section 2, it might be that
reconst(P ) only returns that part of the relation sequence for which it can
construct complete relation states.

2. Note that if reconst returns a sequence, reconst(P ) need not be a prefix of
reconst(P : i), even though P is a prefix of P : i. For example reconst might
sort according to some component A: reconst(P ) = sortA(P ).

3. The element type T of the stream need not be the element type in the do-
main of interpretation (though in the examples above they are the same).
For example, Hammad et al. [HG04] have some stream items with “nega-
tive” flags that cancel previous normal items in the stream. Presumably, the
reconstitution of such a stream would not contain any negative items.

4. If reconst(P ) = d, we will sometimes write const(d) = P . We caution that
this notation is informal, however. There may in fact be more than one P
where reconst(P ) = d, or no such P at all. That is, there can be values in the
domain of interpretation D that are not the reconstitution of any stream.

5. The condition for a stream operator sop being the on-line analogue of an
operation dop over the domain D is given by the commutative diagram in
Figure 1. We note that the reconstitution function need not be constant
throughout a query.

6. We see from the examples above that presentation order of items in a stream
is sometimes significant for a reconstitution function (insr and insrc) and
sometimes not (ins and insu). The question arises whether applications
where stream order is not important show up in practice much. We think the
more common case is that order does convey part of the semantics of a data
stream, but that the other case does arise. Consider, for example, a stream
of URLs arising from a web crawl. While some aspects of the crawl process,
or posting times of pages, might influence the order of URLs in the stream,
most applications will treat it as an unordered collection. There are also
cases where there are some global aspects of order in a stream, but locally
order is not significant. For example, consider the stream of network packets
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sop
P1P 2

dd1 2
dop

reconstreconst

Fig. 1. A stream operator as an on-line analogue of a domain operator

passing through a router. The denotation might be a collection of sessions
under various protocols, where each session is a sequence of messages. How-
ever, the packets for a given message might not be in order, because of taking
different routes or being retransmitted.

4 Monotonicity, Reconstitution and Non-blocking
Operators

We are using reconstitution functions to study the connection between mono-
tonicity of a domain operation and the existence of a non-blocking stream ana-
logue, particularly for hierarchically structured data such as XML. Several pa-
pers [ST97, LWZ04] have singled out monotone relational operators (such as se-
lect, join, dupelim), as they are easy to carry over to stream counterparts. This
connection relies on the common reconstitution functions for relational data,
typically ins or insu. For a monotone relational operator rop, r1 ⊆ r2 =⇒
rop(r1) ⊆ rop(r2). If const(rop(r1)) = U1 (that is, ins(U1) = rop(r1)), then we
can find a sequence U2 such that const(rop(r2)) = U1 : U2. That is, the repre-
sentation for rop(r1) is a prefix of the representation for rop(r2). Thus a stream
analogue sop for rop can emit const(rop(ins(P ))) in response to prefix P of a
stream, and know that const(rop(ins(P : i))) will extend that response.

We note, however, that the definition of monotone depends on the definition
of containment. The appropriate definition is fairly clear for relations (tuple
subset), but there are alternatives when considering hierarchical data such as
nested relations and XML. Consider the relational operation nestB , which nests
B-values of a relation based on equality of values on the remaining attributes.
Consider relation r containing the first three tuples of Figure 2(a) (in bold type).
Then nestB(r) = v, where nested relation v is given in Figure 2(b). Let r+ be the
relation in Figure 2(a) with the fourth tuple included. Then nestB(r+) = w, for
w in Figure 2(c). The question is now whether nestB is monotone. Specifically,
is v ⊆ w?
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r( A B )
1 c
2 e
1 d
2 f

v( A {B} )
1 {c, d}
2 {e}

w( A {B} )
1 {c, d}
2 {e, f}

(a) (b) (c)

Fig. 2. Monotonicity of nesting

The answer depends on the definition of containment for nested relations.
There are at least two possibilities:
1. Containment is simply tuple subset, in which case v �⊂ w, since 〈2, {e}〉 is

not in w. Hence nestB is not monotone.
2. Containment is subsumption. Thus v ⊆ w, because every tuple in v is sub-

sumed by some tuple in w. In particular, 〈2, {e}〉 is subsumed by 〈2, {e, f}〉,
and nestB is monotone.
Suppose we choose the second definition, where nest is monotone. Can we

derive a non-blocking stream version of that operation? Doing so requires an
appropriate choice of reconstitution function. Let us call the proposed stream
operator snest, and consider how we want it to behave. We want snest(P ) to
be a prefix of snest(P : i), and, of course, reconst(snest(P : i)) should subsume
reconst(snest(P )). If upon receiving 〈2, f〉, snest emits 〈2, {f}〉, then the simple
ins reconstitution function will not give the desired relationships. However, if
the reconstitution function performs a deep union [BDT99] with the cumulative
result and combines 〈2, {f}〉 with 〈2, {e}〉 to form 〈2, {e, f}〉, we will satisfy
the conditions. Alternatively, snest could maintain state and emit 〈2, {e, f}〉
upon receiving 〈2, f〉. In that case, we need a “subsume-replace” reconstitution
function that overwrites 〈2, {e}〉 with 〈2, {e, f}〉.

A particular case of interest to us is streams of XML. If a stream of XML ele-
ments simply denotes a sequence of independent documents, then not much new
mechanism is needed beyond what is used for flat data items in a stream. On the
other hand, we may want to view an XML stream as a series of fragments that
constitute a single XML document. We have been working on a deep-union-like
operator for XML we call merge [TM01]. The merge operator is logically perform-
ing a lattice-join of two XML documents in a subsumption lattice. One use we
have for merge is a reconstitution-like structural aggregation operator called ac-
cumulate. The accumulate operator successively merges in XML fragments with
a base document, called an accumulator, and makes the accumulator available to
further query-processing steps. For example, in Figure 3(a) we have an accumu-
lator for auction data that is grouping bids under their appropriate items. (This
example is based on the XMark benchmark [XM03].) Figure 3(b) shows a new bid
coming in as an XML element, and Figure 3(c) is the result of merging that ele-
ment into the accumulator. The behavior of the merge operator is modulated by
a merge template, which in essence indicates which lattice we are using to define
the lattice-join. In the example of Figure 3, the merge template would indicate,
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item 

bidder: 
  Joe 

amt: 
$1500 

bid 

auction 

id:501 

item 

desc: 
 1971    
 Martin  
 Guitar 

 

id:433 desc:  
 Trek 5900  
 Superlight 
 Road Bike  
 

 

item 

bid 

bidder: 
  Sue 

amt: 
$1550 

id:501 

auction 

(a) (b)
 

item 

bidder: 
  Joe 

amt: 
$1500 

bid 

auction 

id:501 

amt: 
$1550 

bid 

item 

desc: 
 1971    
 Martin  
 Guitar 

 

id:433 desc:  
 Trek 5900  
 Superlight 
 Road Bike 
 

bidder: 
  Sue 

(c)

Fig. 3. Illustration of the merge operator showing (a) initial accumulator, (b) a frag-
ment to be merged, and (c) the resulting accumulator

for instance, that the merge process should combine corresponding <item> ele-
ments, but create new <bid>, <bidder>, and <amt> elements, as opposed, say,
to creating a new element in the accumulator for each <item> element added.

5 Additional Stream Semantics

There may be information known about a stream in addition to its denotation
and representation, related to its content or presentation order, that is useful for
query processing. Some examples on content are whether or not the stream con-
tains duplicates, and if some subset of attributes forms a key (that is, there are
no duplicate values over these attributes). Another example, for a stream with a
relation-sequence denotation, is whether there is a constant bound on the size of
the relation states. For instance, if the stream contains position reports on a fleet
of vehicles, and each relation state consists of the most recent report on each
vehicle, then the size of any state is at most the number of vehicles n. Such infor-
mation can be useful in determining whether a query has bounded state require-
ments or not [BB02]. Information on the physical presentation of streams is useful
as well, such as if the stream is ordered on a particular attribute, or whether there
is limited skew among the arrival times of items on different streams [BU04].
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Our own work in this area has dealt with the case where a stream can be
viewed as a mixture of finite sub-streams, and where the ends of sub-streams
can be determined. The sub-streams may occur naturally, for example, all the
bids for a single auction, or be externally imposed, such as all sensor readings in
a ten-minute interval. The knowledge about when a sub-stream ends might be
supplied by the stream source, or arise from measurements of network delay, or
be deduced from application semantics, such as knowing that each vehicle reports
its position at least every 20 seconds. Where we have such knowledge, we can
explicitly augment the stream with it, via punctuations [TM03]. A punctuation
is a pattern p inserted into the data stream with the meaning that no data item
i matching p will occur further on in the stream. For example, a punctuation
〈{site3, site5}, 1663, ∗, [6:30p, 6:45p], ∗〉 in the bid stream for an auction server
signals that all bids from Sites 3 and 5 for auction item 1663 made during the
15-minute period starting at 6:30p have been seen. Punctuations can be used to
improve stream operators in at least two ways. First, punctuations can unblock
blocking operators. For example, a group-by operator computing the maximum
bid for each auction item over each 1-hour period could emit answers after seeing
a collection of punctuations similar to the one above. Second, punctuations may
allow a stateful operator to safely discard parts of its state. For example, a
dupelim operator receiving the punctuation above could purge all data items
from its state that match that punctuation.

While we have been working with punctuation-aware operators for several
years now, there are still many questions and extensions to investigate. We have
a good understanding of how single operators can exploit punctuation. However,
we are less far along in understanding when particular punctuation helps a given
query, or, a more challenging problem, starting from a query, determining what
punctuation, if any, would benefit the query [TMS03].

Currently our punctuation marks the end of a sub-stream. We believe there
may also be advantages to “forward-looking” punctuation that describes data
that will appear further on in a stream. We are also starting to investigate
the notion of a deterministic stream: a stream in which for any possible data
item i, one is guaranteed to eventually see either i or a punctuation matching i.
Another variation we are considering is where a bound is known on the amount of
unpunctuated data (items at a given instant with no corresponding punctuation
received). Reasoning with such information could lead to bounds on the amount
of state a query needs. Finally, our current implementation of punctuation is
for flat data, though the underlying query engine handles general XML [NDM].
Punctuation for XML data is still an open area.

6 Disorder in Streams

Disorder in data streams can arise from many sources, such as stream items
being routed by different paths in a network, or combining streams that are out
of synch. A stream may have multiple natural orders, such as start time and end
time of a network flow, and cannot be sorted on both simultaneously. There are
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also algorithms for stream operators that produce disordered output, such as
windowed multi-join [HF03]. In order to deal with disorder in stream query pro-
cessing, it is useful to have some description of the expected or maximum disorder
in a stream. There have been several proposals in this regard. Some describe dis-
order operationally, that is, in terms of what kind of operation will restore order.
An example is the order specifications of Aurora [AC03], which say how much
buffer space is needed to sort the stream (or partitioned sub-streams of it) on a
particular attribute. Other disorder descriptions express the maximal displace-
ment of any item from its correct position. The displacement is usually measured
from a “high-water mark,” and expressed either as a number of items or as a dif-
ference in the ordering attribute. For example, consider the stream of bid items
in Figure 4, where we are considering order on bid time (the fourth column). We
see that item i4 is out of order. It is displaced by 2 items from its correct posi-
tion (between items i1 and i2) and by 3 seconds based on the value of the time
attribute. Examples of this maximum-displacement approach to describing disor-
der include slack in the early versions of the Aurora system [C02] and the banded-
increasing property of the Gigascope project [CJ02]. The k-ordering [BU04] and
out-of-order generation [SW04] constraints of the STREAM project are similar.

i1 〈site3, 1663, b420, 3:15:32, $11.50〉
i2 〈site2, 7287, b812, 3:15:35, $8.00〉
i3 〈site5, 1663, b173, 3:15:36, $12.50〉
i4 〈site1, 1601, b662, 3:15:33, $65.00〉
i5 〈site3, 1663, b420, 3:15:38, $13.00〉

. . .

Fig. 4. A disordered auction stream

While such disorder descriptions are useful, our own investigations have
shown that they are somewhat limited in their expressive power. First, they
assume that the disorder bound is constant across the stream. Figure 5 shows
netflow records from a router in the Abilene Network Observatory [Abi], ordered
by the sequence in which they were emitted, and showing the start time of each
netflow. (A netflow record summarizes packet traffic between two 〈IP, port〉-
pairs.) We have termed such a stream block sorted, and it is clear no items are
displaced across block boundaries.

A second issue is that existing descriptions focus on the maximum disorder,
rather than the average displacement or a distribution of displacements. Consider
Figure 6, which shows the observation time of the 8th packet in a network flow,
ordered by the start time of each flow, for a network trace gathered by the
PMA project [PMA]. While one packet is significantly displaced (perhaps a re-
transmission), the rest occur in a close band of their desired position. We refer
to such a sequence as band disordered. It would be useful to have some statistical
characterization of such disorder, so, for example, one could estimate how the
accuracy of a query is affected by a given cutoff on late items.
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Fig. 5. Block-sorted disorder

Fig. 6. Band disorder

We note that any disorder descriptions of these kinds can be used to gen-
erate punctuations in a data stream, marking the end of particular subsets of
data. For example, if a stream is known to be bound by a slack of 20 seconds,
a punctuate operator can insert a punctuation of the form 〈∗, ∗, ∗, t − 20s, ∗〉
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when it sees an item with bid time t. (However, it likely would not insert a
punctuation based on every item, but less frequently, based on the needs of the
query.)

7 Windowed Operators

Another area where semantics of streams is still a bit fuzzy is windowed op-
erators. One way to modify a blocking or stateful operator to work with data
streams is to change it from considering the totality of a stream to instead op-
erating over a series of finite subsets of the stream. (There are other ways to
modify such an operator. For example, a blocking aggregate such as sum can be
converted to report a “running sum” after each input item.) The most studied
windowed operators are group-by (aggregation) [AW04, C04, SH98, AC03] and
join [HF03, KNF03, HAK03, GO03].

Windowed operators predate their current use in data streams. A WINDOW
construct over stored data appears in SQL 1999 [SQL99]. In fact, the CQL
formulation for windows draws from the SQL counterpart [ABW03]. There has
been a considerable range of proposals on how to define windowed operators,
based, for example, on whether one end or both of the window moves (and in
which direction), the size of the window (its range), how much and how often
it moves (its slide), and where it is located relative to the current point in the
stream (its offset). The range, slide and offset can be denominated in terms of
a number of items, or a quantity or duration of some attribute. In the case that
the window range is expressed by a number of items, and the operator partitions
the stream (such as a group-by aggregation), there are variants where the range
is applied to the whole stream or separately to each partition. The windowing
attribute can be a sequence number, an internally assigned arrival timestamp,
or a value supplied by the stream source.

We see some semantic problems, however. Most approaches to windows are
described in terms of the physical presentation of the stream, rather than its
denotation, often on an operator-by-operator basis [AC03]. Such operational
definitions can lead to problems when the stream appears out of order with
respect to the windowing attribute. We have been developing a formal approach
to window specifications that is independent of physical stream order [LMP04].
In our approach, the various window extents that arise as a window slides over a
stream are each given an explicit window identifier (window id), and an extent
function defines the stream items that are associated with each window id. Our
approach assumes that windows are always defined against an explicit attribute
W , though in practice W might be a sequence number or timestamp supplied
by the stream management system.

For illustration, consider window specifications having the form [RANGE r,
SLIDE u], where r and u are quantities compatible with the domain of W . For
example, if the domain of W is time, then a possible specification is [RANGE
30s, SLIDE 10s], which defines window extents of length 30 seconds, spaced
every 10 seconds.
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The functions that define window extents are expressed in terms of the collec-
tion I of items in input stream S. The window function gives the set of window
ids for a particular specification. In our illustration,

windows(I, r, u) = {0, 1, 2, . . . }.

Here the set of window ids does not depend in the stream contents, nor
the range and slide parameters, but it may for other window types. The ex-
tent function determines the items associated with each window extent. In our
illustration, for w ∈ windows,

extent(I, w, r, u) = {i ∈ I | w · u ≤ i.W ≤ w · u + r}.

(This definition is slightly simplified; in general, it must account for the boundary
conditions at stream startup.)

We have found this approach quite expressive, being able to capture many
flavors of windows mentioned in the literature: landmark, tumbling, slide-by-
tuple, partitioned, etc. Moreover, it has led to a class of algorithms for windowed
aggregates that often outperform approaches based on intra-operator buffering.
Our approach requires an inverse, wids, for the extent function, giving the set
of window ids of window extents that a given item appears in. In our running
illustration,

wids(I, i, r, u) = {w | �i.W/u� − 1 < w ≤ �(i.W + r)/u� − 1}.

(Again, this definition is simplified.) Our approach uses a bucket operator to
extend each stream item with its associated window ids. The resulting output
can then be fed to a group-by operator that treats the window id as just another
grouping attribute. We rely on punctuation (also supplied by bucket) to keep
the aggregation unblocked.

There are still several issues we are investigating with our window semantics.
One is to classify window specifications in terms of properties of their wids
functions. In the example above, wids is “context-free” in the sense that it can be
applied by bucket to each stream item in isolation. Other window specifications,
such as slide-by-tuple with a time-interval range require bucket to be stateful. A
second area of investigation is the interaction of windowing with reconstitution.
Suppose wind is a reconstitution function that interprets a stream as a sequence
of window extents using an interval-based range and slide, and that we are
interested in applying operations window-by-window to such a sequence (the
usual situation). In some cases, the appropriate stream analogue is easy to come
by. For example, with selection, we have

σ(wind(P )) = wind(σ(P )).

If we consider a window based on tuple count, in contrast, the equality no
longer holds. Other operators are more challenging. With duplicate elimination

dupelim(wind(P )) �= wind(dupelim(P ))
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even with an interval-based window. In fact, as far as we can determine, there
is no function g such that

dupelim(wind(P )) = wind(g(P )).

The result of dupelim(wind(P)) must be a stream with a different reconsti-
tution function, perhaps one with positive and negative tuples, or using explicit
window ids.

8 Conclusions

We hope we have taken at least a small step towards answering the question
What do data streams mean? There are still many gaps and rough edges here.
While we think reconstitution functions are a useful device for capturing data-
stream semantics, it is not yet tested whether they can deal with the range of
data streams seen in practice, or are helpful in proving properties of stream
operators. Reconstitution functions help clarify for us the requirements for a
non-blocking stream version of a monotone domain operator, and suggest ap-
proaches for reconstitution of streams of XML fragments. However, we would
like to find ways to encode more general updates in an XML stream, such as
deletions. Playing with punctuations has been fun, but the problems are getting
harder, such as proving space bounds on stream queries. Having more expressive
descriptions for stream disorder is just the starting point. The real challenge is to
use them to manage tradeoffs between query latency, accuracy and space usage.
Finally, the alert reader will have noted we have not yet integrated reconstitution
functions with our semantics for windows. So do something about it.
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