
No Pane, No Gain: Efficient Evaluation of Sliding-Window
Aggregates over Data Streams

Jin Li1, David Maier1, Kristin Tufte1, Vassilis Papadimos1, Peter A. Tucker2
 1Portland State University 2Whitworth College
 Portland, OR, USA Spokane, WA, USA
 {jinli, maier, tufte, vpapad} @cs.pdx.edu ptucker@whitworth.edu

ABSTRACT
Window queries are proving essential to data-stream proc-
essing. In this paper, we present an approach for evaluat-
ing sliding-window aggregate queries that reduces both
space and computation time for query execution. Our ap-
proach divides overlapping windows into disjoint panes,
computes sub-aggregates over each pane, and “rolls up” the
pane-aggregates to compute window-aggregates. Our ex-
perimental study shows that using panes has significant
performance benefits.

1. Introduction
Many applications need to process streams, for example,
financial data analysis, network traffic monitoring, and
telecommunication monitoring. Several database research
groups are building Data Stream Management Systems
(DSMS) so that applications can issue queries to get timely
information from streams. Managing and processing
streams gives rise to challenges that have been extensively
discussed and recognized [3, 4, 6, 7, 12].

An important class of queries over data streams is sliding-
window aggregate queries. Consider an online auction sys-
tem in which bids on auction items are streamed into a cen-
tral auction processing system. The schema of each bid is:
<item-id, bid-price, timestamp>. For ease of presentation,
we assume that bids arrive in order on their timestamp at-
tribute. (We are actively investigating processing disor-
dered data streams) Query 1 shows an example of a sliding-
window aggregate query.
Query 1: “Find the maximum bid price for the past 4 min-
utes and update the result every 1 minute.”
SELECT max(bid-price)
FROM bids[WATTR timestamp
 RANGE 4 minutes
 SLIDE 1 minute]
In the query above, we introduce a window specification
with three parameters: RANGE specifies the window size,
SLIDE specifies how the window moves, and WATTR
specifies the windowing attribute on which that the
RANGE and SLIDE parameters are defined. The window
specification of Query 1 breaks the bid stream into over-
lapping 4-minute sub-streams that start every minute, with
respect to the timestamp attribute. These overlapping sub-
streams are called sliding windows. Query 1 calculates the

max for each window, and returns a stream with schema
<max, timestamp>, where the timestamp attribute indicates
the time when the max value is generated (the end of the
window). Sliding window aggregate queries allow users to
aggregate the stream at a user-specified granularity
(RANGE) and interval (SLIDE), and thus provide the users
a flexible way to monitor streaming data.

Current proposals for evaluating sliding-window aggregate
queries buffer each input tuple until it is no longer needed
[1]. Since each input tuple belongs to multiple windows,
such approaches buffer a tuple until it is processed for the
aggregate over the last window to which it belongs. Each
input tuple is accessed multiple times, once for each win-
dow that it participates in.

We see two problems with such approaches. First the
buffer size required is unbounded: At any time instant, all
tuples contained in the current window are in the buffer,
and so the size of the required buffers is determined by the
window range and the data arrival rate. Second, processing
each input tuple multiple times leads to a high computation
cost. For example in Query 1, each input tuple is processed
four times. As the ratio of RANGE over SLIDE increases,
so does the number of times each tuple is processed. Con-
sidering the large volume and fast arrival rate of streaming
data, reducing the amount of required buffer space (ideally
to a constant bound) and computation time is an important

Figure 1: Windows Composed of Four Panes

SIGMOD Record, Vol. 34, No. 1, March 2005 39

issue.

We propose a new approach using panes for evaluating
sliding-window aggregate queries that reduces the required
buffer size by sub-aggregating the input stream and reduces
the computation cost by sharing sub-aggregates when com-
puting window aggregates. We sub-aggregate the stream
over non-overlapping sub-sub-streams, which we call
panes; then we aggregate over the pane-aggregates to get
window-aggregates. Figure 1 illustrates how panes are used
to evaluate Query 1. The stream is separated into 1-minute
panes; each 4-minute window is composed of four con-
secutive panes. In Figure 1, w1 – w5 are windows and w3
is composed of panes p3 – p6. Each pane contributes to
four windows; for example, p5 contributes to w2 through
w5. To evaluate Query 1, we calculate the max for each
pane; the max for each window is computed by finding the
max of the maxes of the four panes that contribute to that
window.

Intuitively, panes benefit the evaluation of sliding-window
aggregates as long as there are “enough” tuples per pane.
As we will discuss later, assuming the RANGE and SLIDE
of a given sliding-window query are on the same data at-
tribute (e.g., Query 1), the number of tuples per pane is
determined by the RANGE, SLIDE, and the stream arrival
rate. The type of windowing attribute (e.g., timestamp or
sequence number) normally does not influence the per-
formance with panes. Also, given a sliding-window aggre-
gate query, the benefit of using panes normally increases as
the number of tuples in each pane increases (i.e., as the
average data arrival rate increases).

However, there is a particular type of sliding-window ag-
gregate query used in some DSMSs [1] that panes do not
help: In such a query, the window slides on every tuple.
Thus, the SLIDE is fixed as every tuple. Query 2 is such a
query expressed in our window specification.

Query 2: “Find the max bid price for the past 4 minutes.”
SELECT max (bid-price)
FROM bids [WATTR timestamp
 RANGE 4 minutes
 SLIDE 1 tuple]

In Query 2, each input tuple defines a window and the
query outputs the highest bid (max) in the last four minutes
each time an input tuple arrives. The window operator in
SQL-99 defines windows in a similar way. We call this
type of window a slide-by-tuple window. More generally,
tuple-based window is a window that slides by a fixed
number of tuples (for example, “produce a new result every
ten tuples”); a slide-by-tuple window is a special case of a
tuple-based window in which the window slides by exactly
one tuple. While panes can be beneficial for tuple-based
windows, the benefit vanishes as the SLIDE approaches
one tuple. However, for many stream applications, such as

network-traffic monitoring where the data arrival is rapid,
producing a result every time an input tuple arrives is nei-
ther realistic nor desirable. We believe that most window
aggregates over high-volume streams will use user-
specified granularity (RANGE) and interval (SLIDE) such
as Query 1, and will thus benefit from panes.

This paper is organized as follows: Section 2 discusses
related work; Section 3 describes how to use panes to
evaluate sliding-window aggregate queries; Section 4 pre-
sents experimental results; and Section 5 concludes.

2. Related Work
Panes sub-aggregate the input stream, and in particular, the
sub-aggregates are then shared by the aggregation of mul-
tiple windows (super-aggregation) of a single query to re-
duce both computation time and buffer usage. The concept
of sub-aggregation and super-aggregation is used by the
ROLLUP operator in SQL-99 and the data cube operator
[8] to express aggregates at different granularities over
stored data. The ROLLUP operator provides an efficient
and readable way to express such queries and is most often
used for aggregating data along a hierarchy, for example,
city, state, and country. However, the ROLLUP operator
functions on stored data and handles only slide-by-tuple
windows. Holistic aggregate (e.g., quantile and heavy-
hitter) evaluation in Gigascope [5] uses fast, light-weight
sub-aggregation to reduce data for super-aggregation where
expensive processing is performed. However, Gigascope
only supports tumbling (non-overlapping) window queries.
As such, Gigascope does not share sub-aggregates among
multiple windows. Arasu and Widom [2] propose two algo-
rithms, B-Int and L-Int, for shared execution of multiple
sliding-window aggregates with the same aggregate func-
tion but different window sizes. Their algorithms maintain
a data structure that stores the sub-aggregates over the ac-
tive part of the stream at many different granularities.
When a user polls a query, the aggregate over the current
window is computed by looking up the constituent sub-
aggregates stored in the data structure, and aggregating
those values. B-Int and L-Int share a data structure among
multiple queries to reduce computation cost, at the cost of
increased buffer space usage. These algorithms do not sup-
port periodic result generation—results must be generated
by polling.

3. Panes
In this section, we first describe the evaluation of sliding-
window aggregate queries using panes. Then, we discuss in
detail how panes are used for different types of aggregates.
We use the online auction system introduced in Section 1
as our working scenario. For ease of presentation, we only
discuss time-based windows, but the techniques can be
easily extended to tuple-based windows.

40 SIGMOD Record, Vol. 34, No. 1, March 2005

3.1 Evaluating Queries with Panes
To evaluate a sliding-window aggregate query using panes,
the query is decomposed into two sub-queries: a pane-level
sub-query, PLQ, and a window-level sub-query, WLQ. The
PLQ is a tumbling-window aggregate query, which sepa-
rates the input stream into non-overlapping panes, and pro-
duces a pane-aggregate for each pane. The WLQ is a slid-
ing-window query over the result of the PLQ that returns a
window-aggregate.

Figure 2 shows the query plan for Query 1 using panes.
This query, a sliding-window max, is decomposed into a
tumbling-window max for the PLQ and a sliding-window
max for the WLQ. The PLQ aggregates the input stream
into a pane-max for each pane, and its output schema is
<pane-max, pane-timestamp>, where pane-timestamp
equals the timestamp value of the last tuple contributing to
the pane. The WLQ runs over the stream produced by the
PLQ, uses the pane-timestamp attribute as the windowing
attribute, and every minute computes the max over the last
four minutes. Each window of the WLQ contains four tu-
ples.

To use panes, given a sliding-window aggregate query, the
PLQ and WLQ (i.e., their window specifications and their
aggregate functions) need to be determined. The PLQ and
WLQ aggregate functions depend on the aggregate func-
tion of the original query. For example in a sliding-window
count, the PLQ is a count, and the WLQ is a sum; for a
sliding-window max, both the PLQ and WLQ use the max
aggregate. Given the original query, the window specifica-
tions of both sub-queries are also determined—the intuition
is that the size of the panes in the PLQ is the largest possi-
ble size for sub-aggregation such that the sub-aggregates
can be used by the WLQ to compute window aggregates.
Therefore, given a sliding-window aggregate query, the
RANGE, as well as the SLIDE, of the PLQ is the greatest
common divisor of the RANGE and SLIDE of the query:
pane-range = pane-slide = GCD(RANGE, SLIDE). The
WLQ has the same RANGE and SLIDE as the original
query. The number of panes per window is RANGE/pane-
range. Also, as in Figure 2, for time-based queries, the
PLQ’s windowing attribute is the windowing attribute of
the original query, and the windowing attribute of the
WLQ is the pane-timestamp attribute. From the discussion
above, it is clear that the PLQ and WLQ of a given query
can be constructed automatically. Also note that the im-
plementation of panes, as shown in Figure 2, uses only
window aggregate operators—it does not require any new
query operators for panes.

Panes reduce both required buffer space and computation
cost. The two major features of panes are that 1) the PLQ is
a tumbling-window query: Each input tuple belongs to only
one window, so each tuple is processed only once as it ar-
rives and does not need to be buffered; and 2) the WLQ

does less processing and buffering since it processes pane-
aggregates instead of tuples. Although each pane-aggregate
is processed multiple times by the WLQ, the overall com-
putation cost for the query is normally reduced, because the
number of panes in a window is usually much fewer than
the number of tuples in a window. For example in Query 1,
each input tuple is processed once to produce a pane-max.
Then, each pane-max is used in the computation of four
windows and is accessed four times, because each pane-
max contributes to four windows. Generally, the number of
tuple accesses here is much fewer than that of accessing
each input tuple four times. In addition, by sub-aggregating
the input stream, the PLQ significantly reduces the amount
of input data for the WLQ, and thus the required buffer size
for evaluating the query. Since we assume that tuples arrive
in order, the WLQ only buffers the pane-aggregates con-
tributing to the current window, and so the buffer size re-
quired by the WLQ as well as by the whole query is deter-
mined by the number of panes in a window. For example in
Query 1, the WLQ buffers four max values—this is the
only buffering required by panes to evaluate Query 1.

3.2 Different Types of Aggregates
We introduce two properties of aggregate functions that
affect the evaluation of sliding-window aggregates.

3.2.1 Holistic
Suppose an aggregate function F over a dataset X can be
computed from a “sub-aggregate” function L over disjoint
datasets X1, X2, …, Xn,, where U

ni
i XX

≤≤

=
1

 and a “super-

aggregate” function S to compute F(X) from the sub-
aggregates, L(Xi), 1 ≤ i ≤ n.

F(X) = S({L(Xi) | 1 ≤ i ≤ n})

(item-id, bid-price, timestamp)

(10, $9.12, 12:15:52 PM) t1

(11, $8.93, 12:16:42 PM) t2
(11, $9.20, 12:16:49 PM) t3

(pane-max, pane-timestamp)

($9.12, 12:15:52 PM) p1

($9.20, 12:16:49 PM) p2

(win-max, timestamp)
($9.12, 12:15:52 PM) w1
($9.20, 12:16:49 PM) w2

streamscan

window-max (bid-price)

RANGE = 1 min
SLIDE = 1 min

WATTR = timestamp

window-max (bid-price)
RANGE = 4 min
SLIDE = 1 min

WATTR = pane-timestamp

Figure 2: Using Panes to Evaluate Query 1

SIGMOD Record, Vol. 34, No. 1, March 2005 41

As defined by Gray et al. [8], an aggregate function F is
holistic if for any possible sub-aggregate functions L there
is no constant bound on the size of storage needed to store
the result of L. For example, median, quantile, and mode
are holistic.

We call aggregates that are not holistic bounded aggre-
gates. The term bounded encompasses the distributive and
algebraic terms defined by Gray et al. [8]; the distinction
between distributive and algebraic is unnecessary in our
work. For example, average is bounded: The function L
records count and sum; the function S adds the respective
components and then divides to produce the global aver-
age. Other common examples of bounded aggregates in-
clude count, max, sum, variance, and center-of-mass.

3.2.2 Differential
Assume that there exist two datasets X and Y such that Y ⊇
X. Aggregate F is differential1 if there exist such functions
L, H and J that satisfy the conditions that F(Y − X) can be
computed from L(Y) and L(X) and F(Y) can be computed
from L(Y − X) and L(X) as below:

F(Y–X) = H(L(Y), L(X))
 F(Y) = J(L(Y–X), L(X)).
We also require that |L(X)| < |X|.

For example, count is differential as shown below.
count(Y–X) = count(Y) – count(X)

 count(Y) = count(Y–X) + count(X).
Based on the sub-aggregate function L, we further catego-
rize differential aggregate functions. If the result of L can
be stored with constant storage, F is full-differential. For
example, count, average and variance are full-differential.
A full-differential aggregate function must necessarily be
bounded. Otherwise, if the result of L cannot be stored with
constant bound, F is pseudo-differential, for example, the
heavy-hitter aggregate that finds the frequently occurring
items. Max is an example of an aggregate that is neither
full-differential nor pseudo-differential.

3.3 Panes for Different Aggregate Queries
In this section, we discuss using panes to evaluate bounded
and holistic aggregates. We also discuss the effects that the
differential property and the number of groups defined by
GROUP-BY construct have on evaluating sliding-window
aggregate queries. In the interest of space, we discuss these
two factors for bounded aggregates, but the discussion ap-
plies to holistic aggregates as well.

1 Differential is similar to what Arasu and Widom [2] term as

subtractable.

3.3.1 Panes for Bounded Aggregates
As discussed in Section 3.1, when using panes to evaluate
sliding-window bounded aggregate queries (e.g., Query 1),
the number of required buffers is bounded by the number
of panes per window, and the pane-aggregates can be
shared by the computation of multiple window-aggregates
to reduce overall computation cost.

Given a differential aggregate function, we can exploit that
property to further reduce its evaluation cost by computing
the aggregate for the current window based on the aggre-
gate of the previous window. Most differential bounded
aggregates are full-differential, and so the required buffer
size is still bounded when using panes. For example in
Query 1, to compute the count over w3 as shown in Figure
1, we can use count(w3) = count(w2) – count(p2) + count
(p6). To take the advantage of the differential property, the
aggregate operator (in the WLQ) needs to handle tuple
expiration, as well as tuple arrival.

The GROUP-BY construct introduces another factor, the
number of groups, into the buffering requirement and com-
putation cost. Intuitively, the more groups, the more buffer
space and the more computation are needed to evaluate the
query. The following query is a sliding-window aggregate
query with GROUP-BY.

Query 3: “Count the number of bids made on each auction
item for the past 4 mininutes; and update the result every 1
minute.”
SELECT count(*) FROM bids
GROUP BY item-id [WATTR timestamp

 RANGE 4 minutes
 SLIDE 1 minute]

Using panes to evaluate Query 3, each group in each pane
is aggregated into a <item-id, pane-count, pane-timestamp>
tuple by the PLQ. Assuming G groups per pane for the
WLQ, a window contains 4*G tuples. In addition, the re-
quired buffer size for a sliding-window aggregate query is
P * G * sizeof(pane-aggregate) bytes, where P is number
of panes per window and sizeof (pane-aggregate) is the
number of bytes to store a pane-aggregate value. The num-
ber of groups per pane, G, is important because for each
group the PLQ constructs an output tuple and the WLQ
processes an input tuple. In the extreme case where every
group contains only one tuple, the PLQ does not reduce the
number of input tuples for the WLQ and panes provide no
benefit. In fact, for a bounded aggregate query with
GROUP-BY, the size of the required buffers is bounded
only if the number of groups is bounded, and so the distinc-
tion between a GROUP-BY bounded aggregate and a ho-
listic aggregate is blurred.

Taking both the number of groups and the differential
property of the aggregate function into account, we express
the cost per window-aggregate of using panes for sliding-

42 SIGMOD Record, Vol. 34, No. 1, March 2005

window max and count, TimeP-M and TimeP-C. Here, count
is used to represent differential aggregates, and max is used
to represent non-differential ones.
 TimeP-M = a*T/P + b*G + c*P*G (3.1)
 TimeP-C = a*T/P + b*G +
 2*c*G*SLIDE/GCD(RANGE, SLIDE) (3.2)
In the two formulas above, a is the PLQ’s cost to process
an input tuple, b is the PLQ’s cost to generate an output
tuple, and c is the WLQ’s cost to process a tuple (to insert a
tuple into or to remove a tuple from a window); T is the
number of tuples per window, P is the number of panes per
window, G is the number of groups per pane. In formula
(3.2), SLIDE/GCD(RANGE, SLIDE) is the number of
panes per slide. For example, when RANGE is 9 minutes
and SLIDE is 6 minutes, the number of panes per slide is 2.
Then, 2*c*G* SLIDE/GCD(RANGE, SLIDE) is the cost to
compute the aggregate of the current window based on the
aggregate of the previous window, that is, the cost to expire
old panes and the cost to add new panes. The cost per win-
dow of evaluating a sliding-window max and count with
current approaches, TimeW-M and TimeW-C, are as follows,
where a′ is the cost to process each tuple (to insert a tuple
to or to remove a tuple from a window).

TimeW-M = a′*T (3.3)
TimeW-C = 2*a′*SLIDE*(T /RANGE) (3.4)

Using existing approaches to evaluate a sliding-window
max, we need to scan the entire window, just as Formula
3.3 indicates. To evaluate a sliding-window count, because
count is differential, we can compute the count for the cur-
rent window based on the count of the previous window by
adding one to the previous window-count for each new
tuple for the current window and subtracting one for each
expired tuple. Comparing Formulas 3.1 and 3.3 (and 3.2
and 3.4), we see that there are some situations in which
using panes might not yield performance gains: 1) When
the number of groups per pane increases above a certain

threshold; 2) when the data arrival rate is so slow that many
panes are empty; 3) when the number of panes per window
is small.

3.3.2 Panes for Holistic Aggregates
For holistic aggregates, although using panes cannot give
us a constant bound on buffer size, it will in many cases
reduce the amount of buffer space needed. In addition, the
pre-processing of panes can be shared by multiple windows
to reduce computation cost. We use heavy hitters as a ho-
listic aggregate example, and use a method that is similar to
that used by Gigascope to evaluate this aggregate.

Gigascope, a system for processing network-traffic data,
can evaluate heavy hitter queries such as “find the IP
sources that most frequently generate packets.” To evaluate
such queries in Gigascope, multiple alternatives are pre-
sented for sub-aggregate and super-aggregate pairs [5].
One option is that the sub-aggregate uses a hash table to
record the packet-count for each IP source, and then the
super-aggregate uses the hash table entries to update its
data structure, called a sketch, for estimating heavy hitters.
Although Gigascope only evaluates tumbling windows, we
can use a similar method to evaluate heavy hitter queries,
such as Query 4.

Query 4: “Over the past 10 minutes, find the ids of the
auction items on which the number of bids is greater than
or equal to 5% of the total number of bids; update the result
every 1 minute.”

To evaluate Query 4, the PLQ maintains a hash table with
(item-id, count) hash entries. At the end of each pane, the
non-empty hash table entries are output. The WLQ buffers
and uses each hash table entry to update the sketches for
multiple windows. Using panes, the PLQ compresses all
the bids on an auction item to a single hash entry and re-
duces required buffer space, similar to the sub-aggregation
in Gigascope. In addition, each hash table entry is used by

0

0.2
0.4

0.6

0.8

1
1.2

1.4

1.6

1 3 5 10 20 30 40 60 80

Number of Tuples Per Pane

2 P/W

5 P/W

10 P/W

20 P/W

50 P/W

100 P/W

Figure 3: Cost Ratio of the Paned vs. the Windowed Approach
(P/W represents the number of panes per window)

SIGMOD Record, Vol. 34, No. 1, March 2005 43

multiple windows, and thus reduces the overall computa-
tion cost. Similar strategies can be applied to evaluate other
sliding-window holistic aggregates using panes.

We note that differential holistic aggregate functions are
necessarily pseudo-differential. Consider heavy hitters: The
count recorded by hash table entries can be summed or
subtracted, so the sketch of the current window can be con-
structed based the sketch of the previous window; but there
is no bound on the number of hash entries for each pane.

4. Performance Study
We implemented panes in the publicly-available version of
Niagara Internet Query Engine [10], and empirically com-
pared the evaluation of sliding-window aggregate queries
with and without panes. Our experiments were conducted
on an Intel® Pentium 4® 2.40 MHz machine, running Linux
7.3, with 512MB main memory. Our data generator is
loosely based on the XMark data generator [13], and the
data size for the experiments was approximately 15.2 MB.
We calculated execution time by measuring the query exe-
cution time and then subtracting the cost of scanning the
input stream, to focus on just the aggregation cost.

In our experiments, we varied the RANGE and the SLIDE
parameters of a sliding-window max query, effectively
varying the number of tuples per pane, and the number of
panes per window (i.e., P/W, as shown by the different
columns of each group in Figure 3). Figure 3 shows the
ratio of the execution time using panes over the execution
time of the current windowed approach (without panes).
For example, we see that at 20 tuples per pane and 5 panes
per window, the paned option takes about 30% of the time
of the non-paned option. We see from Figure 3 that using
panes has better performance than the original approach in
most cases.

5. Discussion and Conclusion
In this paper, we presented a technique called panes, which
reduces both the space and computation cost of evaluating
sliding-window queries by sub-aggregating and sharing
computation. We discussed using panes to exploit data re-
duction and computation sharing among multiple window-
aggregate computation within a single query. We believe
that panes can be extended to improve execution of multi-
ple sliding-window queries over the same stream by shar-
ing panes. We are also working on other aspects of proc-
essing streams, including formalization of window seman-
tics, evaluation of window queries and processing disor-
dered streams [9].

6. ACKNOWLEDGMENT
This work was supported by NSF grant IIS 0086002.

7. REFERENCES
[1] A. Arasu, S. Babu, and J. Widom. The CQL Continu-

ous Query Language: Semantic Foundations and
Query Execution. Stanford University Technical Re-
port, October 2003.

[2] A. Arasu, J. Widom. Resource Sharing in Continuous
Sliding-Window Aggregates. In Proceedings of the
30th International Conference on Very Large Data-
bases (VLDB 2004).

[3] B. Babcock et al. Models and Issues in Data Stream
Systems. In Proc. of the 2002 ACM Symp. on Princi-
ples of Database Systems (PODS 2002).

[4] D. Carney et al. Monitoring Streams – A New Class of
Data Management Applications. In Proceedings of the
28th International Conference on Very Large Data-
bases (VLDB 2002).

[5] G. Cormode et al. Holistic UDAFs at streaming
speeds. In Proceedings of the 2004 ACM SIGMOD In-
ternational Conference on the Management of Data
(SIGMOD 2004).

[6] C. Cranor, T. Johnson, O. Spatashek. Gigascope: A
Stream Database for Network Applications. In Pro-
ceedings of the 2003 ACM SIGMOD International
Conference on the Management of Data (SIGMOD
2003).

[7] S. Chandrasekaran et al. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In Pro-
ceedings of the 2003 Conference on Innovative Data
Systems Research.

[8] J. Gray et al. Data Cube: A Relational Aggregation
Operator generalizing Group-by, Cross-Tab, and Sub
Totals. Data Mining and Knowledge Discovery 1(1),
1997, 29-53.

[9] J. Li et al. Evaluating window aggregate queries over
streams. Technical Report, May 2004, OGI/OHSU.
http://www.cse.ogi.edu/~jinli/papers/WinAggrQ.pdf

[10] J. Naughton et al. The Niagara Internet Query System.
IEEE Data Engineering Bulletin, 24(2), 27-33, (June
2001).

[11] U. Srivastava, J. Widom. Flexible Time Management
in Data Stream Systems. Technical Report 2003-40,
Stanford University, Stanford, CA (July 2003).

[12] The STREAM Group. STREAM: The Stanford
STREAM Data Manager. IEEE Data Engineering Bul-
letin, 26(1), (March 2003).

[13] XMark Benchmark. http://www.xml-benchmark.org.

44 SIGMOD Record, Vol. 34, No. 1, March 2005

