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ABSTRACT 
Window queries are proving essential to data-stream proc-
essing.  In this paper, we present an approach for evaluat-
ing sliding-window aggregate queries that reduces both 
space and computation time for query execution. Our ap-
proach divides overlapping windows into disjoint panes, 
computes sub-aggregates over each pane, and “rolls up” the 
pane-aggregates to compute window-aggregates. Our ex-
perimental study shows that using panes has significant 
performance benefits.  

1. Introduction 
Many applications need to process streams, for example, 
financial data analysis, network traffic monitoring, and 
telecommunication monitoring. Several database research 
groups are building Data Stream Management Systems 
(DSMS) so that applications can issue queries to get timely 
information from streams. Managing and processing 
streams gives rise to challenges that have been extensively 
discussed and recognized [3, 4, 6, 7, 12].  

An important class of queries over data streams is sliding-
window aggregate queries. Consider an online auction sys-
tem in which bids on auction items are streamed into a cen-
tral auction processing system. The schema of each bid is: 
<item-id, bid-price, timestamp>. For ease of presentation, 
we assume that bids arrive in order on their timestamp at-
tribute. (We are actively investigating processing disor-
dered data streams) Query 1 shows an example of a sliding-
window aggregate query. 
Query 1: “Find the maximum bid price for the past 4 min-
utes and update the result every 1 minute.” 
SELECT max(bid-price) 
FROM bids[WATTR timestamp 
          RANGE 4 minutes 
          SLIDE 1 minute] 
In the query above, we introduce a window specification 
with three parameters: RANGE specifies the window size, 
SLIDE specifies how the window moves, and WATTR 
specifies the windowing attribute on which that the 
RANGE and SLIDE parameters are defined. The window 
specification of Query 1 breaks the bid stream into over-
lapping 4-minute sub-streams that start every minute, with 
respect to the timestamp attribute. These overlapping sub-
streams are called sliding windows. Query 1 calculates the 

max for each window, and returns a stream with schema 
<max, timestamp>, where the timestamp attribute indicates 
the time when the max value is generated (the end of the 
window). Sliding window aggregate queries allow users to 
aggregate the stream at a user-specified granularity 
(RANGE) and interval (SLIDE), and thus provide the users 
a flexible way to monitor streaming data.  

Current proposals for evaluating sliding-window aggregate 
queries buffer each input tuple until it is no longer needed 
[1]. Since each input tuple belongs to multiple windows, 
such approaches buffer a tuple until it is processed for the 
aggregate over the last window to which it belongs. Each 
input tuple is accessed multiple times, once for each win-
dow that it participates in.   

We see two problems with such approaches. First the 
buffer size required is unbounded: At any time instant, all 
tuples contained in the current window are in the buffer, 
and so the size of the required buffers is determined by the 
window range and the data arrival rate. Second, processing 
each input tuple multiple times leads to a high computation 
cost. For example in Query 1, each input tuple is processed 
four times. As the ratio of RANGE over SLIDE increases, 
so does the number of times each tuple is processed. Con-
sidering the large volume and fast arrival rate of streaming 
data, reducing the amount of required buffer space (ideally 
to a constant bound) and computation time is an important 

Figure 1: Windows Composed of Four Panes 
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issue.  

We propose a new approach using panes for evaluating 
sliding-window aggregate queries that reduces the required 
buffer size by sub-aggregating the input stream and reduces 
the computation cost by sharing sub-aggregates when com-
puting window aggregates. We sub-aggregate the stream 
over non-overlapping sub-sub-streams, which we call 
panes; then we aggregate over the pane-aggregates to get 
window-aggregates. Figure 1 illustrates how panes are used 
to evaluate Query 1. The stream is separated into 1-minute 
panes; each 4-minute window is composed of four con-
secutive panes. In Figure 1, w1 – w5 are windows and w3 
is composed of panes p3 – p6. Each pane contributes to 
four windows; for example, p5 contributes to w2 through 
w5. To evaluate Query 1, we calculate the max for each 
pane; the max for each window is computed by finding the 
max of the maxes of the four panes that contribute to that 
window.  

Intuitively, panes benefit the evaluation of sliding-window 
aggregates as long as there are “enough” tuples per pane. 
As we will discuss later, assuming the RANGE and SLIDE 
of a given sliding-window query are on the same data at-
tribute (e.g., Query 1), the number of tuples per pane is 
determined by the RANGE, SLIDE, and the stream arrival 
rate. The type of windowing attribute (e.g., timestamp or 
sequence number) normally does not influence the per-
formance with panes. Also, given a sliding-window aggre-
gate query, the benefit of using panes normally increases as 
the number of tuples in each pane increases (i.e., as the 
average data arrival rate increases). 

However, there is a particular type of sliding-window ag-
gregate query used in some DSMSs [1] that panes do not 
help: In such a query, the window slides on every tuple. 
Thus, the SLIDE is fixed as every tuple.  Query 2 is such a 
query expressed in our window specification.  

Query 2: “Find the max bid price for the past 4 minutes.” 
SELECT max (bid-price)  
FROM bids [WATTR timestamp 
           RANGE 4 minutes 
           SLIDE 1 tuple] 

In Query 2, each input tuple defines a window and the 
query outputs the highest bid (max) in the last four minutes 
each time an input tuple arrives. The window operator in 
SQL-99 defines windows in a similar way. We call this 
type of window a slide-by-tuple window. More generally, 
tuple-based window is a window that slides by a fixed 
number of tuples (for example, “produce a new result every 
ten tuples”); a slide-by-tuple window is a special case of a 
tuple-based window in which the window slides by exactly 
one tuple.  While panes can be beneficial for tuple-based 
windows, the benefit vanishes as the SLIDE approaches 
one tuple. However, for many stream applications, such as 

network-traffic monitoring where the data arrival is rapid, 
producing a result every time an input tuple arrives is nei-
ther realistic nor desirable. We believe that most window 
aggregates over high-volume streams will use user-
specified granularity (RANGE) and interval (SLIDE) such 
as Query 1, and will thus benefit from panes.  

This paper is organized as follows: Section 2 discusses 
related work; Section 3 describes how to use panes to 
evaluate sliding-window aggregate queries; Section 4 pre-
sents experimental results; and Section 5 concludes.  

2. Related Work 
Panes sub-aggregate the input stream, and in particular, the 
sub-aggregates are then shared by the aggregation of mul-
tiple windows (super-aggregation) of a single query to re-
duce both computation time and buffer usage. The concept 
of sub-aggregation and super-aggregation is used by the 
ROLLUP operator in SQL-99 and the data cube operator 
[8] to express aggregates at different granularities over 
stored data. The ROLLUP operator provides an efficient 
and readable way to express such queries and is most often 
used for aggregating data along a hierarchy, for example, 
city, state, and country. However, the ROLLUP operator 
functions on stored data and handles only slide-by-tuple 
windows. Holistic aggregate (e.g., quantile and heavy-
hitter) evaluation in Gigascope [5] uses fast, light-weight 
sub-aggregation to reduce data for super-aggregation where 
expensive processing is performed. However, Gigascope 
only supports tumbling (non-overlapping) window queries. 
As such, Gigascope does not share sub-aggregates among 
multiple windows. Arasu and Widom [2] propose two algo-
rithms, B-Int and L-Int, for shared execution of multiple 
sliding-window aggregates with the same aggregate func-
tion but different window sizes. Their algorithms maintain 
a data structure that stores the sub-aggregates over the ac-
tive part of the stream at many different granularities. 
When a user polls a query, the aggregate over the current 
window is computed by looking up the constituent sub-
aggregates stored in the data structure, and aggregating 
those values. B-Int and L-Int share a data structure among 
multiple queries to reduce computation cost, at the cost of 
increased buffer space usage. These algorithms do not sup-
port periodic result generation—results must be generated 
by polling.  

3. Panes 
In this section, we first describe the evaluation of sliding-
window aggregate queries using panes. Then, we discuss in 
detail how panes are used for different types of aggregates. 
We use the online auction system introduced in Section 1 
as our working scenario. For ease of presentation, we only 
discuss time-based windows, but the techniques can be 
easily extended to tuple-based windows.  

40 SIGMOD Record, Vol. 34, No. 1, March 2005



3.1 Evaluating Queries with Panes 
To evaluate a sliding-window aggregate query using panes, 
the query is decomposed into two sub-queries: a pane-level 
sub-query, PLQ, and a window-level sub-query, WLQ. The 
PLQ is a tumbling-window aggregate query, which sepa-
rates the input stream into non-overlapping panes, and pro-
duces a pane-aggregate for each pane. The WLQ is a slid-
ing-window query over the result of the PLQ that returns a 
window-aggregate.  

Figure 2 shows the query plan for Query 1 using panes. 
This query, a sliding-window max, is decomposed into a 
tumbling-window max for the PLQ and a sliding-window 
max for the WLQ. The PLQ aggregates the input stream 
into a pane-max for each pane, and its output schema is 
<pane-max, pane-timestamp>, where pane-timestamp 
equals the timestamp value of the last tuple contributing to 
the pane. The WLQ runs over the stream produced by the 
PLQ, uses the pane-timestamp attribute as the windowing 
attribute, and every minute computes the max over the last 
four minutes. Each window of the WLQ contains four tu-
ples.  

To use panes, given a sliding-window aggregate query, the 
PLQ and WLQ (i.e., their window specifications and their 
aggregate functions) need to be determined. The PLQ and 
WLQ aggregate functions depend on the aggregate func-
tion of the original query. For example in a sliding-window 
count, the PLQ is a count, and the WLQ is a sum; for a 
sliding-window max, both the PLQ and WLQ use the max 
aggregate. Given the original query, the window specifica-
tions of both sub-queries are also determined—the intuition 
is that the size of the panes in the PLQ is the largest possi-
ble size for sub-aggregation such that the sub-aggregates 
can be used by the WLQ to compute window aggregates. 
Therefore, given a sliding-window aggregate query, the 
RANGE, as well as the SLIDE, of the PLQ is the greatest 
common divisor of the RANGE and SLIDE of the query: 
pane-range = pane-slide = GCD(RANGE, SLIDE). The 
WLQ has the same RANGE and SLIDE as the original 
query. The number of panes per window is RANGE/pane-
range. Also, as in Figure 2, for time-based queries, the 
PLQ’s windowing attribute is the windowing attribute of 
the original query, and the windowing attribute of the 
WLQ is the pane-timestamp attribute. From the discussion 
above, it is clear that the PLQ and WLQ of a given query 
can be constructed automatically. Also note that the im-
plementation of panes, as shown in Figure 2, uses only 
window aggregate operators—it does not require any new 
query operators for panes. 

Panes reduce both required buffer space and computation 
cost. The two major features of panes are that 1) the PLQ is 
a tumbling-window query: Each input tuple belongs to only 
one window, so each tuple is processed only once as it ar-
rives and does not need to be buffered; and 2) the WLQ 

does less processing and buffering since it processes pane-
aggregates instead of tuples. Although each pane-aggregate 
is processed multiple times by the WLQ, the overall com-
putation cost for the query is normally reduced, because the 
number of panes in a window is usually much fewer than 
the number of tuples in a window. For example in Query 1, 
each input tuple is processed once to produce a pane-max. 
Then, each pane-max is used in the computation of four 
windows and is accessed four times, because each pane-
max contributes to four windows. Generally, the number of 
tuple accesses here is much fewer than that of accessing 
each input tuple four times. In addition, by sub-aggregating 
the input stream, the PLQ significantly reduces the amount 
of input data for the WLQ, and thus the required buffer size 
for evaluating the query. Since we assume that tuples arrive 
in order, the WLQ only buffers the pane-aggregates con-
tributing to the current window, and so the buffer size re-
quired by the WLQ as well as by the whole query is deter-
mined by the number of panes in a window. For example in 
Query 1, the WLQ buffers four max values—this is the 
only buffering required by panes to evaluate Query 1.  

3.2 Different Types of Aggregates 
We introduce two properties of aggregate functions that 
affect the evaluation of sliding-window aggregates.  

3.2.1 Holistic 
Suppose an aggregate function F over a dataset X can be 
computed from a “sub-aggregate” function L over disjoint 
datasets X1, X2, …, Xn,, where U

ni
i XX

≤≤

=
1

  and a “super-

aggregate” function S to compute F(X) from the sub-
aggregates, L(Xi), 1 ≤ i ≤ n. 

F(X) = S({L( Xi ) | 1 ≤ i ≤ n}) 
            

(item-id, bid-price, timestamp) 

(10, $9.12, 12:15:52 PM) t1 

(11, $8.93, 12:16:42 PM) t2 
(11, $9.20, 12:16:49 PM) t3 

(pane-max, pane-timestamp) 

($9.12, 12:15:52 PM) p1 

($9.20, 12:16:49 PM) p2  

(win-max, timestamp) 
($9.12, 12:15:52 PM) w1 
($9.20, 12:16:49 PM) w2 

streamscan 

 
window-max (bid-price)  

RANGE = 1 min 
SLIDE = 1 min 

WATTR =  timestamp

window-max (bid-price)  
RANGE = 4 min 
SLIDE = 1 min 

WATTR =  pane-timestamp 

 

Figure 2: Using Panes to Evaluate Query 1 
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As defined by Gray et al. [8], an aggregate function F is 
holistic if for any possible sub-aggregate functions L there 
is no constant bound on the size of storage needed to store 
the result of L. For example, median, quantile, and mode 
are holistic.  

We call aggregates that are not holistic bounded aggre-
gates. The term bounded encompasses the distributive and 
algebraic terms defined by Gray et al. [8]; the distinction 
between distributive and algebraic is unnecessary in our 
work. For example, average is bounded: The function L 
records count and sum; the function S adds the respective 
components and then divides to produce the global aver-
age. Other common examples of bounded aggregates in-
clude count, max, sum, variance, and center-of-mass. 

3.2.2 Differential 
Assume that there exist two datasets X and Y such that Y ⊇ 
X. Aggregate F is differential1 if there exist such functions 
L, H and J that satisfy the conditions that F(Y − X) can be 
computed from L(Y) and L(X) and F(Y) can be computed 
from L(Y − X) and L(X) as below: 

F(Y–X) = H(L(Y), L(X)) 
                               F(Y) = J(L(Y–X), L(X)). 
We also require that |L(X)| < |X|. 

For example, count is differential as shown below. 
count(Y–X) = count(Y) – count(X) 

 count(Y) = count(Y–X) + count(X). 
Based on the sub-aggregate function L, we further catego-
rize differential aggregate functions.  If the result of L can 
be stored with constant storage, F is full-differential. For 
example, count, average and variance are full-differential. 
A full-differential aggregate function must necessarily be 
bounded. Otherwise, if the result of L cannot be stored with 
constant bound, F is pseudo-differential, for example, the 
heavy-hitter aggregate that finds the frequently occurring 
items. Max is an example of an aggregate that is neither 
full-differential nor pseudo-differential.  

3.3 Panes for Different Aggregate Queries 
In this section, we discuss using panes to evaluate bounded 
and holistic aggregates. We also discuss the effects that the 
differential property and the number of groups defined by 
GROUP-BY construct have on evaluating sliding-window 
aggregate queries. In the interest of space, we discuss these 
two factors for bounded aggregates, but the discussion ap-
plies to holistic aggregates as well. 

                                                                 
1 Differential is similar to what Arasu and Widom [2] term as 

subtractable. 

3.3.1 Panes for Bounded Aggregates 
As discussed in Section 3.1, when using panes to evaluate 
sliding-window bounded aggregate queries (e.g., Query 1), 
the number of required buffers is bounded by the number 
of panes per window, and the pane-aggregates can be 
shared by the computation of multiple window-aggregates 
to reduce overall computation cost.  

Given a differential aggregate function, we can exploit that 
property to further reduce its evaluation cost by computing 
the aggregate for the current window based on the aggre-
gate of the previous window. Most differential bounded 
aggregates are full-differential, and so the required buffer 
size is still bounded when using panes. For example in 
Query 1, to compute the count over w3 as shown in Figure 
1, we can use count(w3) = count(w2) – count(p2) + count 
(p6). To take the advantage of the differential property, the 
aggregate operator (in the WLQ) needs to handle tuple 
expiration, as well as tuple arrival. 

The GROUP-BY construct introduces another factor, the 
number of groups, into the buffering requirement and com-
putation cost. Intuitively, the more groups, the more buffer 
space and the more computation are needed to evaluate the 
query. The following query is a sliding-window aggregate 
query with GROUP-BY.  

Query 3: “Count the number of bids made on each auction 
item for the past 4 mininutes; and update the result every 1 
minute.”  
SELECT count(*) FROM bids  
GROUP BY item-id [WATTR timestamp 

    RANGE 4 minutes 
    SLIDE 1 minute] 

Using panes to evaluate Query 3, each group in each pane 
is aggregated into a <item-id, pane-count, pane-timestamp> 
tuple by the PLQ. Assuming G groups per pane for the 
WLQ, a window contains 4*G tuples. In addition, the re-
quired buffer size for a sliding-window aggregate query is 
P * G * sizeof(pane-aggregate) bytes, where P is number 
of panes per window and sizeof (pane-aggregate) is the 
number of bytes to store a pane-aggregate value. The num-
ber of groups per pane, G, is important because for each 
group the PLQ constructs an output tuple and the WLQ 
processes an input tuple. In the extreme case where every 
group contains only one tuple, the PLQ does not reduce the 
number of input tuples for the WLQ and panes provide no 
benefit. In fact, for a bounded aggregate query with 
GROUP-BY, the size of the required buffers is bounded 
only if the number of groups is bounded, and so the distinc-
tion between a GROUP-BY bounded aggregate and a ho-
listic aggregate is blurred.  

Taking both the number of groups and the differential 
property of the aggregate function into account, we express 
the cost per window-aggregate of using panes for sliding-
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window max and count, TimeP-M and TimeP-C. Here, count 
is used to represent differential aggregates, and max is used 
to represent non-differential ones. 
  TimeP-M = a*T/P + b*G + c*P*G                (3.1) 
  TimeP-C = a*T/P + b*G +  
                  2*c*G*SLIDE/GCD(RANGE, SLIDE)      (3.2) 
In the two formulas above, a is the PLQ’s cost to process 
an input tuple, b is the PLQ’s cost to generate an output 
tuple, and c is the WLQ’s cost to process a tuple (to insert a 
tuple into or to remove a tuple from a window); T is the 
number of tuples per window, P is the number of panes per 
window, G is the number of groups per pane. In formula 
(3.2), SLIDE/GCD(RANGE, SLIDE) is the number of 
panes per slide. For example, when RANGE is 9 minutes 
and SLIDE is 6 minutes, the number of panes per slide is 2. 
Then, 2*c*G* SLIDE/GCD(RANGE, SLIDE) is the cost to 
compute the aggregate of the current window based on the 
aggregate of the previous window, that is, the cost to expire 
old panes and the cost to add new panes. The cost per win-
dow of evaluating a sliding-window max and count with 
current approaches, TimeW-M and TimeW-C, are as follows, 
where a′ is the cost to process each tuple (to insert a tuple 
to or to remove a tuple from a window).  

TimeW-M = a′*T     (3.3) 
TimeW-C = 2*a′*SLIDE*(T /RANGE)  (3.4) 

Using existing approaches to evaluate a sliding-window 
max, we need to scan the entire window, just as Formula 
3.3 indicates. To evaluate a sliding-window count, because 
count is differential, we can compute the count for the cur-
rent window based on the count of the previous window by 
adding one to the previous window-count for each new 
tuple for the current window and subtracting one for each 
expired tuple. Comparing Formulas 3.1 and 3.3 (and 3.2 
and 3.4), we see that there are some situations in which 
using panes might not yield performance gains: 1) When 
the number of groups per pane increases above a certain 

threshold; 2) when the data arrival rate is so slow that many 
panes are empty; 3) when the number of panes per window 
is small.  

3.3.2 Panes for Holistic Aggregates 
For holistic aggregates, although using panes cannot give 
us a constant bound on buffer size, it will in many cases 
reduce the amount of buffer space needed. In addition, the 
pre-processing of panes can be shared by multiple windows 
to reduce computation cost. We use heavy hitters as a ho-
listic aggregate example, and use a method that is similar to 
that used by Gigascope to evaluate this aggregate. 

Gigascope, a system for processing network-traffic data, 
can evaluate heavy hitter queries such as “find the IP 
sources that most frequently generate packets.” To evaluate 
such queries in Gigascope, multiple alternatives are pre-
sented for sub-aggregate and super-aggregate pairs [5]. 
One option is that the sub-aggregate uses a hash table to 
record the packet-count for each IP source, and then the 
super-aggregate uses the hash table entries to update its 
data structure, called a sketch, for estimating heavy hitters. 
Although Gigascope only evaluates tumbling windows, we 
can use a similar method to evaluate heavy hitter queries, 
such as Query 4. 

Query 4: “Over the past 10 minutes, find the ids of the 
auction items on which the number of bids is greater than 
or equal to 5% of the total number of bids; update the result 
every 1 minute.”  

To evaluate Query 4, the PLQ maintains a hash table with 
(item-id, count) hash entries. At the end of each pane, the 
non-empty hash table entries are output. The WLQ buffers 
and uses each hash table entry to update the sketches for 
multiple windows. Using panes, the PLQ compresses all 
the bids on an auction item to a single hash entry and re-
duces required buffer space, similar to the sub-aggregation 
in Gigascope. In addition, each hash table entry is used by 
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multiple windows, and thus reduces the overall computa-
tion cost. Similar strategies can be applied to evaluate other 
sliding-window holistic aggregates using panes.  

We note that differential holistic aggregate functions are 
necessarily pseudo-differential. Consider heavy hitters: The 
count recorded by hash table entries can be summed or 
subtracted, so the sketch of the current window can be con-
structed based the sketch of the previous window; but there 
is no bound on the number of hash entries for each pane.  

4. Performance Study 
We implemented panes in the publicly-available version of 
Niagara Internet Query Engine [10], and empirically com-
pared the evaluation of sliding-window aggregate queries 
with and without panes. Our experiments were conducted 
on an Intel® Pentium 4® 2.40 MHz machine, running Linux 
7.3, with 512MB main memory. Our data generator is 
loosely based on the XMark data generator [13], and the 
data size for the experiments was approximately 15.2 MB. 
We calculated execution time by measuring the query exe-
cution time and then subtracting the cost of scanning the 
input stream, to focus on just the aggregation cost.  

In our experiments, we varied the RANGE and the SLIDE 
parameters of a sliding-window max query, effectively 
varying the number of tuples per pane, and the number of 
panes per window (i.e., P/W, as shown by the different 
columns of each group in Figure 3). Figure 3 shows the 
ratio of the execution time using panes over the execution 
time of the current windowed approach (without panes). 
For example, we see that at 20 tuples per pane and 5 panes 
per window, the paned option takes about 30% of the time 
of the non-paned option. We see from Figure 3 that using 
panes has better performance than the original approach in 
most cases.  

5. Discussion and Conclusion 
In this paper, we presented a technique called panes, which 
reduces both the space and computation cost of evaluating 
sliding-window queries by sub-aggregating and sharing 
computation. We discussed using panes to exploit data re-
duction and computation sharing among multiple window-
aggregate computation within a single query. We believe 
that panes can be extended to improve execution of multi-
ple sliding-window queries over the same stream by shar-
ing panes. We are also working on other aspects of proc-
essing streams, including formalization of window seman-
tics, evaluation of window queries and processing disor-
dered streams [9].  
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