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ABSTRACT 
A windowed query operator breaks a data stream into possibly 
overlapping subsets of data and computes results over each. 
Many stream systems can evaluate window aggregate queries. 
However, current stream systems suffer from a lack of an explicit 
definition of window semantics. As a result, their implementations 
unnecessarily confuse window definition with physical stream 
properties. This confusion complicates the stream system, and 
even worse, can hurt performance both in terms of memory usage 
and execution time. To address this problem, we propose a 
framework for defining window semantics, which can be used to 
express almost all types of windows of which we are aware, and 
which is easily extensible to other types of windows that may 
occur in the future. Based on this definition, we explore a one-pass 
query evaluation strategy, the Window-ID (WID) approach, for 
various types of window aggregate queries. WID significantly 
reduces both required memory space and execution time for a large 
class of window definitions. In addition, WID can leverage 
punctuations to gracefully handle disorder. Our experimental 
study shows that WID has better execution-time performance 
than existing window aggregate query evaluation options that 
retain and reprocess tuples, and has better latency-accuracy 
tradeoff performance for disordered input streams compared to 
using a fixed delay for disorder handling. 

1. INTRODUCTION 
Many types of data present themselves in stream format: 
environmental sensor readings, network monitoring data, 
telephone call records, traffic sensor data and auction bids, to 
name a few. For applications monitoring and processing streams, 
window aggregates are an important query capacity. A window 
specifies a moving view that decomposes the stream into 
(possibly overlapping) subsets that we call window extents, and 
computes a result over each. (Think of a window specification as a 
“cookie cutter” and window extents as cookies cut with it.) For 

example, “compute the number of vehicles on I-95 between 
milepost 205 and milepost 245 over the past 10 minutes; update 
the count every 1 minute” is a window aggregate query where 
successive window extents overlap by 9 minutes. 

Evaluating window aggregate queries over streams is non-trivial. 
The potential for high data arrival rates, and huge data volumes, 
along with near real-time requirements in many stream 
applications make memory and execution-time performance of 
stream query evaluation critical. Bursty and out-of-order data 
arrival raises problems with detecting the boundaries of window 
extents. Out-of-order data arrival also complicates the process of 
determining the content of window extents and can lead to 
inaccurate aggregate results or high latency in the output of the 
results. We have observed that accommodating out-of-order data 
arrival can introduce much complexity into window query 
evaluation.  

We see two major issues with current stream query systems that 
process window queries. One is the lack of explicit window 
semantics. As a result, the exact content of each window extent 
tends to be confused with window operator implementation and 
physical stream properties. The other is implementation 
efficiency, in particular memory usage and execution time. To 
evaluate sliding window aggregate queries where consecutive 
window extents overlap (i.e., each tuple belongs to multiple 
window extents), most current proposals for window queries keep 
all active input tuples in an in-memory buffer. In addition, each 
tuple is reprocessed multiple times—once for each window extent 
to which it belongs. We will propose an approach that avoids 
intra-operator buffering and tuple re-processing.  

In this paper, we present a framework for defining window 
semantics and a window query evaluation technique based on it. In 
the framework, we define window semantics explicitly—
independent of any algorithm for evaluating window queries. From 
our definition, it is clear that many commonly used types of 
windows do not depend on physical stream order. However, most 
existing window query evaluation techniques assume that stream 
data are ordered or are ordered within some bound. Our window 
query evaluation technique, called the Window-ID approach 
(WID), is suggested by the semantic framework. Our technique 
processes each input tuple on the fly as it arrives, without keeping 
tuples in buffers and without reprocessing tuples. Our 
experimental study shows significantly improved execution-time 
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performance over the existing evaluation techniques that buffer 
and reprocess tuples. 

In contrast to other techniques, another feature of WID is that it  
can process out-of-order tuples on the fly as they arrive without 
sorting them into the “correct” order. It does not require a specific 
type of assumption about the physical order of data in the stream. 
Instead, it uses punctuation [16] to encode whatever kind of 
ordering information if available. In the later part of the paper, we 
examine real-life examples of stream disorder and discuss disorder-
handling methods. Slack [2] and heartbeats [14] are mechanisms 
proposed for handling disorder in input streams. Different means 
for handling disorder can affect the flexibility, scalability and 
performance of window query evaluation approaches. We 
experimentally evaluated latency-accuracy tradeoffs of handling 
disorder using WID and using sort-based slack.  

This paper is organized as follows: Section 2 provides a running 
example that illustrates the basic concepts of WID; Section 3 
introduces our framework for defining window semantics; Section 
4 presents WID; Section 5 analyzes disorder using network flow 
data and discusses mechanisms for handling disorder; Section 6 
presents performance results; Section 7 discusses the extensibility 
of our work and Section 8 concludes. 

2. RUNNING EXAMPLE 
We introduce a running example that illustrates the operations 
used in WID. Through this example, we show that with WIDs 1) 
there is no need to retain input tuples in buffers, although there 
may be queues to pass tuples between steps; 2) each tuple is 
processed only once at a given operation step; and 3) no 
assumptions about the physical order of the input are required.  

Consider a radiation detection system that can be installed along 
freeways, such as the one under study in the New Jersey 
Turnpike Radiation Detection project at Lawrence Livermore 
National Lab [12]. A radiation detection system identifies 
potentially dangerous vehicles, tracks them as they progress along 
the freeway, and targets a vehicle confirmed to have radioactive 
material for interception. Figure 1 shows four detection stations 

involved in a detection task on I-95 northbound from I-195 to the 

Holland Tunnel. While tracking vehicles, it is critical to accurately 
forecast travel time between detection stations, so that the system 
does not lose track of suspicious vehicles. One way to address 
this problem is to estimate the max and min travel time between 
stations.  

A freeway is separated into non-overlapping segments by adjacent 
ramps. Suppose that there exists a speed sensor (such as a pair of 
inductive loop detectors commonly found near freeway on-ramps) 
per segment along the freeway, and that speed readings are 

streamed to a central system, where the min and max speed for 
each segment of the freeway over the past five minutes are 
computed, and updated periodically. Then, min and max travel 
time between stations can be calculated easily and continuously 
updated based on the current speed bound for each segment and 
the length of the segment. 

Suppose the schema of speed sensor readings: <seg-id, speed, ts>, 
where seg-id is the segment id and ts is the timestamp for a sensor 
reading. We might choose to continuously compute the min and 
max speed of each segment by computing the min and max over 
the past 5 minutes, and updating the results every minute. We call 
this query Q1, shown below in a CQL-like language [3]. Note that 
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Figure 1: Four detection stations in a detection task 
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the time notion (e.g., over the past 5 minutes) in Q1 is defined on 
the ts attribute of the sensor readings.  

Q1: SELECT seg-id, max(speed), min(speed) 
   FROM  Traffic [RANGE 300 seconds  

                     SLIDE 60 seconds 
                     WATTR ts] 
GROUP BY seg-id  

   
Figure 2 shows the steps that WID uses to process Q1. The 
details of the operators used for these steps are given in later 
sections. The input traffic speed stream, with punctuations, 
arrives at the query system. Briefly, a punctuation is information 
embedded in a data stream indicating that no more tuples having 
certain attribute values will be seen in the stream. For example, 
punctuation p1 indicates that no more tuples will arrive from 
segment s6 that have a timestamp attribute value less than 
12:11:00PM. In our example, we assume that each individual 
sensor provides such a punctuation every minute.  

As Figure 2 shows, in the first step, each input tuple is tagged 
with a range of window-ids. In WID, each window extent is 
identified by a unique window-id. In this example, we use non-
negative integers for window-ids. Suppose Q1 starts at 
12:00:00PM. Each window extent is a 5 minute sub-stream, which 
overlaps with adjacent window extents. In our case, for example, 
window extent 10 is the 12:06:00PM – 12:11:00PM sub-stream; 
and window extent 11 is the 12:07:00PM – 12:12:00PM sub-
stream. For each input tuple, we can calculate the window-ids for 
the window extents to which it belongs. For example, t1 belongs to 
window extents 10 through 14. A similar calculation is applied to 
punctuations. Each input punctuation, which punctuates on the 
seg-id and ts attributes, is transformed into a punctuation on the 
seg-id and wid attributes. For example, p1 is transformed into p1' , 
which indicates that no more tuples from the sensor at segment s6 
for window extent 10 will arrive. Note that we extend the input 
scheme of the speed tuple by adding the wid attribute as an 
explicit data attribute. Also note that in step 1, each tuple or 
punctuation is processed immediately as it arrives, and is streamed 
out immediately after processing.  

The second step is an aggregation step where tuples tagged with 
window-ids are grouped by the seg-id attribute, as well as the wid 
attribute. Note that a tuple tagged with a range of window-ids 
represents a set of tuples, each tagged with a single window-id. An 
internal hash table is used to maintain the partial max and min 
value for each group. Upon the arrival of a punctuation, the hash 
entry that matches the punctuation is output and purged from the 
hash table. For example, when punctuation p1'  arrives, m1 is 
output and its corresponding hash entry is cleared.  

Overall, introducing window-ids into query execution brings 
benefits to both performance and system implementation. It 
reduces operator buffer space and execution time; and it 
transforms window aggregate queries into group-by aggregate 
queries and thus reduces the implementation complexity of the 
system. Also observe that it does not need to reorder tuples on ts, 

as long as punctuations are placed correctly. WID does require 
having calculations for multiple window extents underway 
concurrently, but the storage overhead is trivial unless there are 
many more window extents than tuples. 

3. WINDOW SEMANTICS 
As can be seen from our example, key to WID is the association of 
tuples with window-ids. In this section we present a semantic 
framework that makes this association explicit, independent of 
any particular operator implementation. In Section 4 we return to 
window-aggregate evaluation based on this semantics. 

3.1 Motivation 
In previous work, window semantics often has been described 
operationally. However, operational window definitions tend to 
lead to confusion of the window extent definition with physical 
data properties and implementation details. For example, some 
current window query operators process window extents 
sequentially— that is, they close the active window when a tuple 
past it arrives, which translates into a requirement that their input 
arrive in order of the windowing attribute. If the data is not in 
order, some sort mechanism such as Aurora’s BSort [2] must be 
used to reorder the data. Without a mechanism to explicitly 
identify what extents tuples belong to, tuples cannot be processed 
in their arrival order (unless it corresponds to window order), 
which leads to retaining tuples in the implementation, latency, and 
inflexibility of query evaluation.  

We propose a semantic framework, and define semantics of 
existing types of window under this framework. Our window 
semantics definition is independent of any implementation 
algorithm. Having explicit window semantics leads directly to a 
flexible implementation that can handle a wide variety of windows 
and which can handle disordered data in a number of ways. In 
addition, an explicit definition makes it easier to verify the 
correctness of a window operator implementation. 

Note that defining window semantics and implementing the 
defined semantics are two separate issues. A window semantics 
definition specifies the content of window extents, while 
implementation issues, such as determining when to process an 
extent (and whether to approximate its actual value), are handled 
by separate mechanisms or directives. 

3.2 Window Specification 
A window specification is a window type and a set of parameters 
that defines a window to be used by a query. For example, the 
specification of the sliding window in Q1 has parameters: RANGE, 
SLIDE and WATTR. In our window semantics, the content of a 
window extent is determined by applying a window specification 
to a set of input tuples. Our goal of discussing window 
specification here is to introduce the parameters used to express 
different windows whose semantics will be defined later, but not 
to provide a universal specification for all possible windows. 
However, our window specification parameters are general enough 



to express almost all stream window aggregate queries we have 
seen [5, 15].  

Our window specification for sliding window aggregate queries 
consists of three parameters, RANGE, SLIDE and WATTR, 
which specify the length of the window, the step by which the 
window moves, and the windowing attribute—the attribute over 
which RANGE and SLIDE are specified. For ease of presentation, 
we assume the arrival time and the arrival position of tuples in a 
stream are explicit attributes arrival-ts and row-num in the input 
tuples. In the following, we introduce different types of windows 
and their expressions in window specification. 

A time-based sliding window query such as Q1 shown in Section 
2, is expressed with RANGE = 300 seconds, SLIDE = 60 seconds 
and WATTR = ts. (Note that in this example, ts is the timestamp 
attribute provided by the sensors and not the arrival timestamp) 
Tuple-based sliding window queries are also common. A tuple-
based query uses the row-num attribute of tuples as the WATTR. 
For example, consider Q2, which asks “Count the number of 
vehicles for each segment over the past 1000 rows, update that 
result every 10 rows” and is expressed as: 

Q2: SELECT seg-id, count(*) 
  FROM  Traffic [RANGE 1000 rows  

                     SLIDE 10 rows 
                     WATTR row-num] 
GROUP BY seg-id 

 
Potentially, WATTR can be any tuple attribute with a totally 
ordered domain. Having this option allows us to define windows 
over timestamps assigned by external data sources or internally by 
the system; to handle a stream with a schema containing multiple 
timestamp attributes; and to window over non-temporal tuple 
attributes.  

Another kind of sliding window is when the RANGE and SLIDE 
are specified on different attributes. In such a case, SATTR (slide 
attribute) and RATTR (range attribute) are used in place of 
WATTR to express the attributes over which SLIDE and RANGE 
are specified, respectively. A common example of this type of 
query is a query with RANGE over a timestamp (ts, in our 
example) attribute (RATTR) and SLIDE 1 row over row-num 
(SATTR). In such a case, each tuple arrival introduces a new 
window extent that has length RANGE and ends at the newly-
arrived tuple, as shown in query Q3 below. We use the term slide-
by-tuple to refer to this type of windows hereinafter. The window 
operator in CQL uses slide-by-tuple windows to transform the 
input stream into instantaneous relations. 

Q3: SELECT seg-id, count(*) 
   FROM  Traffic [RANGE 300 seconds  
                        RATTR ts 
                        SLIDE 1 row 
            SATTR row-num] 
 
A partitioned window aggregate query uses an additional 
partitioning attribute, PATTR, to split the input stream into sub-

streams before applying the other parameters in the window 
specification to each sub-stream. Q4, shown below, is identical to 
Q2 except that seg-id is now a partitioning attribute instead of a 
group-by attribute.  

Q4: SELECT seg-id, count(*) 
   FROM  Traffic [RANGE 1000 rows  

                     SLIDE 10 rows 
                     WATTR row-num 
                     PATTR seg-id] 

 
This change in the window specification leads to significant 
changes in the window semantics. Q2, a non-partitioned query, 
takes a sequence of 1000 tuples from input stream as a window 
extent, then divides those 1000 tuples into groups by segment id 
and counts the vehicles in each group. In short, Q2 first computes 
the window extent and then divides the extent into groups. In 
contrast, Q4 first divides a stream into “partitions” (sub-streams) 
by the partitioning attribute, and then divides each partition into 
window extents independently, based on the other three 
parameters in window specification. Note that for time-based 
window queries, the PATTR parameter does not bring more 
expressive power—the effect of a PATTR attribute is the same as 
using it as a group-by attribute [4]. 

Discussion: Our window specifications are similar to the window 
construct in CQL (Continuous Query Language) [3], a SQL-based 
language for expressing continuous queries over data streams. Our 
window specification differs from it in the use of explicit user-
specified WATTR and SLIDE parameters, whereas the published 
version of CQL [3] assumes a “slide-by-tuple” window semantics 
and uses a pre-defined timestamp or tuple sequence number as the 
windowing attribute.  

SQL-99 defines a window clause for use on stored data. SQL-99 
limits windows to sliding by each tuple (i.e., each tuple defines a 
window extent), thus tying each output tuple to an input tuple. 
We call such windows data-driven. In comparison, stream queries 
often use domain-driven window semantics where users specify 
how far the consecutive window extents are spaced from each 
other in terms of domain values [15]. We believe domain-driven 
windows are more suitable for applications with bursty or high-
volume data. Consider a network monitoring application—one 
possibly wants network statistics updated at regular intervals, 
independent of surges or lulls in traffic.  

A variation of our window specifications is to use functions in 
window specifications. For example, the following query Q5 is a 
variation of Q3.  

Q5: SELECT seg-id, count(*) 
   FROM  Traffic [RANGE 300 seconds  
                        RATTR ts 
                        SLIDE 5 rows 
            SATTR rank(ts)] 
 
The function rank  (ts) maps each tuple t in the input stream to its 
rank in order of the ts attribute values. So instead of advancing a 



window based on tuple arrival order, we advance it based on the 
logical order implied by ts. So, the window in Q5 is of the length 
300 seconds over the ts attribute, and slides by 5 rows over the 
logical order defined by ts. Conceptually, this window suggests 
sorting before windowing, similar to the window clause with the 
ORDER BY construct defined in SQL-99. In this paper, we only 
consider rank(RATTR)—the attribute defining the slide order 
needs to agree with the range attribute. 

3.3 Window-Ids and Window Extents 
We propose a framework to define window semantics by 
mappings between window-ids and tuples in both directions. The 
framework consists of three functions: windows, extent, and wids.     

In this sub-section, we describe windows and extent, over a set of 
tuples, T, for each type of window we just discussed. For a given 
window type, windows defines the window-ids to use for that 
type of window—values from different domains are used as 
window-ids for different types of window. The extent function 
specifies which tuples belong to the window extent denoted by a 
given window-id—the mapping from window-ids to tuples. More 
precisely, given a window specification S and the set of tuples T 
that compose a stream, windows (T, S) is the set of window-ids 
that identify window extents to which tuples in T may belongs. 
Given a window-id w ∈ windows (T, S), extent(w, T, S) is the set 
of tuples in T belonging to the window extent identified by w. We 
require that extent(w, T, S) is finite. Note that T is an unordered, 
possibly infinite, logical entity—it is not expected to be 
materialized at any point in an implementation.  

For ease of presentation, we assume that RANGE, SLIDE and 
WATTR (or, SATTR and RATTR) attribute values are all in the 
same units. For example in Q1, RANGE and SLIDE are both in 
seconds.  

For window queries in which RANGE and SLIDE are specified on 
the WATTR attribute, such as Q1 or Q2, the window and extent 
functions are as below. Here, we use the non-negative integers for 
window-ids, which depend on neither T nor S. 
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The extent function is defined using only the WATTR values of 
tuples, independent of physical arrival order. In the extent 
function, the value minWATTR(T) represents the minimum value 
that WATTR takes over all tuples in T. This exact value may be 
difficult to measure, but in practice any approximation that is less 
than minWATTR(T) is acceptable, and does not affect the window 
extent definition. Assuming WATTR values are non-negative 
numbers, one can always think of minWATTR(T) as 0. The ‘max’ in 
the extent function deals with the boundary cases where the 

window “straddles” the minWATTR(T), by permitting “partial” 
window extents. For example, in Q1, window extents 0 through 3 
are partial, and they are of length 1, 2, 3, 4 minutes respectively. 

The windows and extent functions above also apply to tumbling 
windows, and naturally extend to landmark windows. Tumbling 
window is a special case of sliding windows, where RANGE 
equals SLIDE and thus window extents do not overlap. Landmark 
windows are similar to sliding windows except that each window 
extent starts at the “beginning” of the stream.  

Slide-by-tuple window queries, such as Q3, are another type of 
sliding-window aggregate queries. For this type of windows, the 
number of window extents is data-dependent and we do not use a 
simple integer sequence for window-ids. Instead, we use values of 
T.RATTR—the projection of input tuples on RATTR—for 
window-ids. The windows and extent functions for slide-by-tuple 
windows are given below.  

windows(T, S[RANGE, RATTR, 1, row-num]) =  
                                         {w | t ∈ T, w = t.RATTR}. 

extent(w, T, S [RANGE,  RATTR, 1, row-num]) =  
                                         {u ∈ T | w – RANGE < u.RATTR ≤ w}. 
Assuming unique RATTR values, each RATTR attribute value 
identifies a window extent that ends at that tuple.  

A variation on slide-by-tuple windows is windows for which the 
SLIDE is n tuples. Here, every nth  tuple defines a window extent. 
Thus, we use the RATTR-values of every n tuples in T as 
window-ids. The extent function is the same as that of slide-by-
tuple windows and the windows function is given by: 

windows(T, S[RANGE, RATTR, SLIDE, row-num]) =  
          {w | t ∈ T, mod(t.row-num, SLIDE) = 0,  w = t.RATTR}. 

For windows in which the SLIDE is n tuples over the logical order 
of the stream on the RATTR, as shown in Q5, the extent function 
is also the same as that of slide-by-tuple windows. The windows 
definition uses a rank(t, attr, T) function, which, given a tuple t 
and attribute attr, returns t’s rank in T in the order of attr. 

windows(T, S[RANGE, RATTR, SLIDE, SATTR]) =  
               {w | t ∈ T, mod (rank(t, SATTR, T)), SLIDE) = 0,  
                        w = t.WATTR}. 

For partitioned tuple-based window queries, such as Q4, window-
ids are compound values consisting of a non-negative integer 
representing a window extent in a partition and a partitioning 
attribute value.  

( ) { ( , ) | {0,1,2,...}, . }windows T i p i p TPATTR= ∈ ∈ . 

Here T.PATTR means the projection of T on PATTR. The extent 
function in this case determines the content of the window extent 
based both on its integer index and partitioning attribute value. In 
the extent function definition, we use the function rank(t, attr, p, 
T), which given a tuple t, an attribute attr, a partitioning attribute 
p, and a set of tuples T,  returns t’s rank in the p partition of T, in 
the order of attr. For example, rank(t, row-num, PATTR, T) in the 



following extent function returns tuple t’s arrival position in the 
partition to which it belongs, i.e., t.PATTR. 

extent ((i, p), T, S[RANGE, SLIDE, row-num, PATTR]) = 
 {t∈T | t.PATTR = p,  
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        rank(t.row-num, PATTR, T) < min WATTR(T) + 
(i+1)*SLIDE}. 

3.4 Mapping Tuples to Window-ids 
The extent function defines window semantics in a window-centric 
way from the perspective of understanding the content of each 
window extent. In this section, we define the function, wids, 
which is a relational inverse to the extent function, and maps each 
input tuple to a set of window-ids (representing window extents). 
The wids function provides the same window semantics 
information, in tuple-centric manner. Intuitively, this tuple-centric 
version of the window semantics definition corresponds to 
operations on each input tuple in the implementation. For a given 
window type, let W = windows (T, S). Then, for a tuple t, wids (t, 
T, S) is the set of window-ids in W, identifying window extent to 
which tuple t belongs: wids (t, T, S) = {w∈W | t ∈ extent(w)}. 

The wids function for non-partitioned windows whose RANGE 
and SLIDE are both specified on the WATTR attribute, such as 
Q1 and Q2, is defined as follows:  

wids (t, T, S[RANGE, SLIDE, WATTR]) =  
        {w∈W | (t.WATTR – minWATTR(T)) / SLIDE – 1 < w 
                    ≤ (t.WATTR + RANGE – minWATTR(T)) / SLIDE –1}. 

Note that in the wids function above, a tuple t is mapped to a set 
of window-ids, without reference to other tuples nor to t’s arrival 
position in T. 

For slide-by-tuple windows such as Q3, and its two variations, 
the wids function is given by: 

wids (t, T, S[RANGE, RATTR, 1, row-num]) = 
        { w∈W | t.RATTR = w < t.RATTR + RANGE} 

Here, the window-ids of window extents to which tuple t belongs 
fall between t.RATTR and t.RATTR+RANGE.  

For partitioned tuple-based windows, the wids function is given 
below, where r = rank  (t, row-num, PATTR, T): 

wids (t, T, S[RANGE, row-num, PATTR]) =  
       {(i, p)∈W | t.PATTR = p, (r – minrow-num(T)) / SLIDE – 1 <  
                         w ≤ (r + RANGE – minrow-num(T)) / SLIDE –1}. 

The correctness of each wids definition can be verified using 
corresponding extent definition. We have proved the inverse 
relationship of extent and wids pairs discussed. The proof consists 
of two cases, based on whether minWATTR(T) is greater than 
minWATTR(T)+(w+1)*SLIDE–RANGE. 

Discussion: Our window specification is quite expressive, and 
the semantic framework suggests a general way to define window 

semantics. We have discussed existing types of windows that we 
have seen. However, well-defined windows in our window 
specification are not guaranteed to be meaningful; further, wids 
functions of well-defined windows might not be computable. It 
remains an open question and future work for us to characterize 
the functions used in the framework in order to guarantee a 
feasible implementation of wids function.  

4. BEYOND SEMANTICS: Towards Window 
Query Evaluation 
To map from a tuple to a set of window-ids, the wids functions 
for different types of windows require different information. In 
this section, we categorize different types of information that may 
be required in mapping tuples to sets of window-ids, and classify 
windows based on this requirement. That categorization in turn 
helps dictate the appropriate implementation techniques for given 
types of windows. 

We define two types of “context” information that may be 
involved in the implementation of a wids function: backward-
context and forward-context. Given a tuple t, its backward-context 
is information about tuples that have arrived before t.  Forward-
context is information about tuples that will arrive after t. If a wids 
function requires backward-context, it implies that the 
implementation will need to maintain information about 
previously arrived tuples. For example, the implementation of a 
partitioned tuple-based window must maintain a count of tuples 
that have arrived for each partition. Typically, having to maintain 
backward-context is not a significant restriction, and does not 
prevent one from determining window-ids immediately upon tuple 
arrival. In contrast, if a wids function requires forward-context, 
then information from tuples arriving after a tuple t is required to 
calculate the window-ids for t. This requirement implies that the 
exact window-ids for tuple t cannot all be determined until those 
tuples arrive. Thus a wids function requiring forward-context 
implies that tuples may need to be buffered and delayed. Slide-by-
tuple windows require forward-context. The rank  function in the 
wids definition for partitioned windows (e.g., Q4) reflects a 
backward-context requirement, because rank  uses row-num as the 
attribute to define order on; and using the RATTR-values of later 
tuples (i.e., t.RATTR = w < t.RATTR + RANGE) in the wids 
definition for slide-by-tuple windows (e.g., Q3) reflects a forward-
context requirement. 

We categorize windows into FCF (forward-context free), and FCA 
(forward-context aware), primarily based on their forward-context 
requirements (Characterizing each category is an interesting open 
question). We define a window as FCF if the wids implementation 
does not require forward-context. Time-based windows, tuple-
based sliding windows, and partitioned tuple-based windows are 
FCF. We define a window as FCA (forward-context aware) if the 
wids implementation requires forward-context. Slide-by-tuple 
windows and its two variations (slide by n tuples over row-num 
and rank(RATTR), respectively) are FCA. Under the FCF 
category, we define a window as CF (context free) if the 



implementation of its wids mapping requires neither forward- nor 
backward-context. Tuple-based and time-based sliding windows 
are CF. The wids function of a CF window maps each input tuple 
to a set of window-ids only based on the window specification 
and the tuple itself, and correspondingly in the implementation, 
window-ids for each tuple can be determined as the tuple arrives 
and no state needs to be maintained. We proceed to discuss the 
implementation details for different categories of windows. 

5. FCF WINDOWS: the WID Approach 
We present our evaluation techniques for window aggregate 
queries, WID, for FCF windows in this section, and for FCA 
windows in the next section. WID is a direct application of our 
window semantics definition, and of the wids function in 
particular. By using window-ids in the implementation, WID 
encapsulates window semantics in the operation that tags tuples 
with window-ids, and explicitly transforms the window semantics 
of queries into data semantics via a wid attribute.  

Due to its explicit definition and implementation of window 
semantics, WID provides one-pass query evaluation for sliding 
window aggregate queries, eliminating the need to retain input 
tuples in intra-operator buffers, and greatly reducing memory 
usage during query evaluation. WID is very flexible and scalable. 
The implementation does not put constraints on physical 
properties of the input streams. For example, other window 
aggregate algorithms require the data be sorted before being 
aggregated. In contrast, WID does not have such constraints. In 
addition, the aggregation step is window-agnostic, since wid is 
treated as any other attribute, and the implementation of the 
window semantics is easy to manage and verify. We proceed to 
describe the system in which we implemented WID, and then 
discuss WID in detail for FCF windows. 

5.1 System Overview and Punctuation  
Our implementation of WID is based on an extended version of 
Niagara Query Engine [10] for processing data streams. Niagara 
was initially developed at the University of Wisconsin-Madison 
as a system for querying XML data on the Internet. It  is written 
in Java and has a push-based (pipelined) query-processing model. 
The extended version of Niagara supports data streams by 
enhancing Niagara operators to support punctuation [16]. 

WID leverages punctuations for query execution and disorder 
handling. Briefly, a punctuation is a message embedded in a data 
stream indicating that a certain subset of data is complete; a 
punctuation indicates that no more tuples having certain attribute 
values will be seen in the stream. Punctuations are used in stream 
query processing to adapt blocking and stateful operators to data 
streams. We have defined punctuation behavior for query 
operators [16]. Some operators, such as select, simply pass 
punctuations through to the next operator in the query plan. 
Group-by operators use punctuations to recognize when groups 
are complete so they can output results for, and purge state 

associated with, those groups. WID uses punctuations to signal 
the end of window extents.  

The generation and source of punctuations is an interesting 
research problem in itself. Punctuations may come from many 
sources. In the running example, punctuations come from the 
external data source; another common source of punctuations is 
operators in the query system. For example, if traffic sensors in 
the running example do not provide punctuations, punctuations 
can be generated based on the assumption that each traffic sensor 
produces sorted data. When the first tuple with a timestamp 
greater than 12:11 from segment s6 is received by an operator, that 
operator can assume that all data from segment s6 with timestamp 
before 12:11 have been received and can promptly generate a 
punctuation: (s6, *, 12:11:00), the same as p1 in Figure 2. We can 
also generate punctuations based on a slack bound on the maximal 
disorder in a data stream [2].  

5.2 Query Evaluation for FCF Windows 
WID tags tuples with ranges of window-ids, keeps aggregate 
operators window-agnostic, and uses punctuation to indicate 
when to output results. 

5.2.1 Bucket Operator 
The first step in WID is to map each tuple explicitly to a set of 
window-ids. We introduce a new operator, bucket, that tags each 
tuple with its associated window-ids by using the appropriate 
wids function. A range of window-ids is appended to each tuple as 
a data attribute, wid. Alternatively, a wid value can also be an 
explicit set, or tuples can be duplicated with different ids, if 
necessary. Figure 3 shows the query plan using WID for Q1, a CF 
query. As in Figure 3, the bucket operator takes a window 
specification as a parameter. 

The implementation of bucket varies for different types of 
windows. A key difference is the amount of state that bucket 
must maintain. For CF windows, such as Q1 and Q2, bucket does 
not need to maintain any state and can append a range of window-

(seg-id,  speed,  ts)  

( s6,       50,    12:10:30)  t  

( s6,        *,     12:11:00)  p 

(seg-id, speed,    ts,       wid) 

( s6,       50,    12:10:30, 10-14)  t

( s6,        *,          *,            10 )  

streamscan 

          bucket 

  (range = 5 minutes 
    slide = 1 minute) 

 AggrFun (max, min) 
(group on seg-id wid) 

    

Figure 3: Query plan for Q1 



ids to each input tuple immediately when the tuple arrives at the 
bucket operator, since the wids function for an FCF window does 
not require forward-context. Bucket also applies a similar 
calculation to transform punctuations on WATTR into 
punctuations on the wid attribute. 

5.2.2 Aggregation 
Bucket tags tuples with window-ids; the aggregate operator 
processes these tuples to produce an aggregate value for each 
window extent. Using wid attribute as an additional grouping 
attribute is the key to this aggregation step. Given a tuple t tagged 
with a range of window-ids w1–wn (t.wid = w1–wn), the aggregate 
operator uses t to update n aggregate values whose wid-values fall 
between w1 and wn inclusive. Note that the window specification, 
and thus the window semantics, is not exposed to the aggregate 
operator. However, we have extended the aggregate operator to 
understand range values. 

The aggregate operator must detect when each window extent is 
complete and then output the result for that extent. Detecting the 
ends of window extents is particularly challenging when the input 
stream is disordered, or when the data arrival rate is bursty or 
slow [7] because disordered input streams may lead to incomplete 
window extents, and bursty or slow streams may result in a high 
delay in outputting results. In WID, we use punctuations to 
indicate the ends of extents. When the aggregate operator receives 
a punctuation, it outputs the results for the matching window 
extents and purges the corresponding state. 

Using punctuations to convey end-of-extent messages transforms 
the complexity of detecting the end of window extents into the 
generation of punctuations. In contrast to hardwiring arrival order 
information or assumptions into the implementation, using 
punctuation to signal the ends of window extents is more flexible. 
The correctness of punctuations affects the accuracy of results, 
and the regular arrival of punctuations can reduce the delay in 
outputting results. Delays in punctuation arrival delay the result, 
and increase the state that the aggregate operator must keep, but 
do not affect the correctness of results. 

5.2.3 Discussion  
Compared to existing techniques that retain and reprocess input 
tuples, WID reduces both buffer space and execution time, as our 
experimental results in Section 8 attest. The main space savings 
come from never explicitly materializing window extents, but 
instead maintaining partial aggregates for multiple extents 
simultaneously—almost always a beneficial tradeoff. For example, 
if RANGE is 60 minutes, and SLIDE is 5 minutes, current 
window query evaluation algorithms would buffer one hour’s 
worth of tuples; in contrast, WID needs to buffer only 12 (= 60/5) 
aggregate values—one for each active window extent. Secondary 
space savings come from avoiding any buffer space devoted to 
sorting out-of-order tuples. The tuples can be tagged and 
processed as they arrive. The only offsetting expense is 
sometimes retaining a few more aggregate values for incomplete 

window extents. The main time saving comes from handling each 
tuple once, and recording its contribution to all its window extents 
at that time, rather than revisiting it multiple times. 

One optimization possible with WID we investigated is to pre-
aggregate tuples on panes (sub-windows), and then consider those 
pane aggregates to get full window aggregates [9]. Using panes 
with WID leads to further execution-time savings, due to 
computation sharing among consecutive windows. In addition, 
using panes to evaluate holistic aggregates [6] can reduce 
execution-time, which plain WID do not.  

6. FCA WINDOWS: the WID Approach 
Recall that a FCA window has a wids function that requires 
forward-context; that is for a tuple t, determining the set of 
window extents to which t belongs requires information from 
tuples arriving after t. In many implementations, the requirement 
of forward-context leads to buffering and delaying of tuples. We 
propose an algorithm that uses window-id ranges to process 
several types of FCA windows, including slide-by-tuple 
windows, in one pass. Ours is the only algorithm we know of that 
can process FCA windows without buffering and reprocessing 
tuples. 

We observe that we can further differentiate FCA windows into 
FCB (forward-context bounded) and FCU (forward-context 
unbounded) windows based on whether we can bound the range of 
forward-context the wids function requires. Loosely, for FCB 
windows, when a tuple t arrives, we can determine the range of 
window-ids for the extents in which t participates, but not all the 
exact window-ids. For FCU windows, it is not possible to 
determine the range of window-ids for each input tuple as it 
arrives. 

We first present WID for slide-by-tuple windows, as they are the 
most commonly discussed FCA windows. Then we discuss WID 
for the two variations of slide-by-tuple windows, which slide by n 
tuples over row-num attribute and rank  (RATTR), respectively. 
The latter is FCU.  

6.1 Slide-by-tuple Windows 
In WID for FCF windows, the bucket operator tags each tuple 
with a range of window-ids and a window-agnostic aggregate 
operator computes the results. In WID for FCA windows, the 
bucket operator also tags tuples with a window-id range; however 
this range has a different meaning and in fact the binding of 
window-ids to input tuples is deferred to the aggregate operator. 
With this design, we process each tuple only once and handle out-
of-order tuples the same as in-order tuples.  

The aggregate operator for slide-by-tuple windows requires a more 
sophisticated design as will be described below. We avoid retaining 
and re-processing tuples by maintaining partial aggregates for 
extents and by using these partial aggregates to initialize partial 
aggregates for new extents.  



6.1.1 Example 
For FCA windows we know we cannot calculate a set of window-
ids for a tuple t upon t’s arrival since this would require 
information about tuples arriving in the future. However, careful 
examination of the wids function for slide-by-tuple windows 
reveals that we can determine the range into which these window-
ids will fall. For example, given the range of a slide-by-tuple 
window, RANGE, and a tuple t with t.RATTR = s, the set of 
windows-ids to which t is mapped fall into the range [t.RATTR, 
t.RATTR + RANGE), and thus bucket will tag t with this range. 
Recall that for slide-by-tuple windows and variations, we use 
RATTR values as window-ids.  

We proceed to consider how the aggregate operator works. For 
each input tuple t with t.RATTR = s, the first window extent t 
belongs to is s: {u ∈ T | s – RANGE < u.RATTR ≤ s}, which ends 
with the arrival of t. We define an auxiliary extent for t, s + 
RANGE:  {u ∈ T | s < u.RATTR ≤ s + RANGE}, which is the 
earliest subsequent extent to which t does not contribute. (Note 
that an auxiliary extent need not correspond to an actual tuple in 
T.) For ease of presentation, we denote the window extent s and 
the auxiliary extent s + RANGE of tuple t as Ss and Es 
respectively, and refer to them as bins collectively. One can think 
of Ss and Es as the “start bin” and “end bin”, respectively. We use 
B to refer to the wid for bin B, i.e, Ss = s and Es = s+ RANGE. 

Figure 4 shows the processing of a slide-by-tuple query where the 
aggregate is count, the RATTR is A, and RANGE is i. We depict the 

bins as laid out in order of the A attribute, with a bin B associated 
with the position of its B. We mark the region to the right of the 
end of the bin, up to the end of the next bin with the partial 
aggregate value for the bin. For example, in Figure 4(d), the partial 
aggregate for Es1 is 2 and for Ss4 is 3. The reason we label regions 
in this way is to indicate that any extent whose wid is in the 
region would have that contribution to its partial aggregate from 
tuples contributed to that bin. Thus, an extent for wid s, where 
Es1 ≤ s < Ss4, would have a contribution of 2 to its count from 
tuples in Figure 4(d). We consider the arrival of tuples t1 – t5, 
where si = ti.A. We start with an initial bin, init, with count = 0. 
The arrival of t1 adds bins Ss1 and Es1 (Figure 4(a)), with initial 
values 1 and 0, respectively. Tuple t2 with s2 > s1 starts bins Ss2 
and Es2, with Ss2 set initially to the value of Ss1 plus 1, and Es2 
initialized to Es1 (Figure 4(b)). Es1 is incremented by 1, to reflect 
the contribution of t2. Figure 4(c) show the effect of t3, where s3 
> s2: Ss3 and Es3 are created and initialized, and Es1 and Es2 are 
incremented. Figure 4(d) shows the need for E-bins: Ss4 is 
initialized from Es1, reflecting the contribution of t2 and t3, but 
with t1 out of the extent for Ss4. Finally, Figure 4(e) shows the 
arrival of an out-of-order tuple t5, with s1 < s5 < s2. Ss5 is 
initialized from Ss1 and Es5 from Es1, with bins Ss2, Ss3 and 
Es1incremented. If at this point, punctuation arrives indicating 
future WATTR-values are greater than s2, the operator can emit the 
aggregate values for Ss1, Ss5 and Ss2 (and discard Ss1 and Ss5). 

Figure 5 shows the general case for the arrival of tuple tn, when 
(Ssn, Esn) spans bins B1, B2, …, Bm. Bins B1 and Bm are “split” 
and used to initialize Ssn and Esn; every bin Bi, 1 < i ≤ m is also 
updated. 

 

Figure 5: Bin updates for arrival of tuple tn. 

6.1.2 Algorithm 
In this section, we present the algorithms used by the bucket and 
the aggregate operator in WID for slide-by-tuple window queries. 

The implementation of bucket is straightforward. For each tuple t, 
where t.RATTR = s, it adds an attribute t.wid = (Ss, Es) giving the 
maximal range of window-ids for extents to which it belongs. It 
also transforms punctuations on RATTR to punctuations on wid. 

Figure 4: Example of insertion, initialization, and 
update of bins as new tuples arrive. 



Figure 6 contains pseudo-code for the aggregate operator. The 
aggregate operator needs to store partial aggregates for bins that 
are not expired. Initialize sets up the special “init” bin, labeled 
with -∞. ProcessTuple sets up new start and end bins for each 
arriving tuple, then updates appropriate bins. ProcessPunctuation 
outputs results and purges appropriate bins.  

Our WID implementation for slide-by-tuple windows does not 
retain and reprocess tuples; and it accommodates out-of-order 
tuples. For slide-by-tuple windows, we avoid reprocessing tuples 
at the cost of maintaining auxiliary extents (end bins). On the other 
hand, our approach does not need space to retain input tuples. 
Therefore, our approach still compares favorably to the existing 
buffering approaches with regards to buffer space and execution-
time performance. In addition, as WID maintains partial aggregates 
for active window extents incrementally, the latency of outputting 
results is kept low. 

6.1.3 Variations  
This approach can be extended to variations of slide-by-tuple 
windows, no tuple needing to be retained and reprocessed, again 
with the cost of maintaining partial aggregates for additional 
extents. The bucket operator for these two variations is the same 
as the bucket for slide-by-tuple windows. We first discuss the 
variation that slides over the row-num attribute, which is a FCB 
window.  

For each tuple t with t.RATTR = s, the ProcessTuple function in 
the aggregate operator still maintains partial aggregates for two 
bins, Ss and Es; but it stores the t.row-num with the two partial 
aggregates for it, e.g., [Ss, t.row-num, pa]. The ProcessPunctuation 
function only outputs the aggregates for the required window 
extents. 

For the variation that slides over the tuple count of the logically-
ordered input stream over RATTR, the ProcessTuple function 
stores the current tuple count of t with the partial aggregates, e.g., 
[Ss, tup-cnt, pa]. The stored tuple count is updated as a new tuple 
arrives. The ProcessPunctuation function is the same as the 
function for windows that slide over tuple’s row-num attribute. 

In summary, just as for slide-by-tuple windows, WID for these 
two variations processes each tuple only once, and handles 
disordered input; but it needs to maintain extra partial aggregates. 
In particular, for the second variation, although its wids function 
definition uses rank over RATTR attribute, it potentially requires 
global information over the entire stream, using punctuations 
unblocks this “sort” requirement in the implementation. 
Therefore, comparing the space and time performance of WID 
with the buffering approach, there is a tradeoff between these two 
on internal space usage versus execution-time and output latency. 
For example, when a stream is slow and the slide is large, the 
buffering approach might outperform WID in terms of internal 
space usage. However, execution-time is normally a more critical 
requirement for stream applications. 

7. DISORDER 
Out-of-order tuples can cause both accuracy and latency problems 
in window query evaluation. In this section, we first discuss 
sources of disorder; then we examine information that can be used 
to handle disorder and compare different ways of incorporating 
the information into an implementation. Because of the non-
uniform disorder patterns and the different types of information 
that need to be used to handle disorder, it is important that a 
disorder-handling mechanism be flexible, while retaining efficiency. 

7.1 Disorder 
There are various causes of disorder in data streams. Two simple 
causes are merging unsynchronized streams and network delays. 
In addition, query processing—join processing in particular—may 
introduce disorder [8]. Further, stream data may appear disordered 
when a window is defined on an attribute other than the natural 
ordering attribute. For example, network flow records typically 
have a start time and an end time; records typically arrive in end-
time order, but some network flow queries define windows on 
start time [5]. Finally, data prioritization can create significant 
disorder. For example Raman et al. [13] and Urhan and Franklin 

State 

We maintain two collections, S and E, each storing pairs 
of the form [wid, pa] where pa is the partial aggregate for 
bin with window-id wid. S stores start bins and E stores 
end bins. 

Initialize ( ) 

      /* aggr-init depends on the aggregate function; for 
example, aggr-init = 0 for count */ 
/* We use -∞ as the wid value of the init bin*/ 

    1.  add [-∞, aggr-init] to E 

ProcessTuple (t)  

Let t.wid = (Ss, Es)  

    1. Add [Ss, pa] to S, where [w, pa] ∈ S ∪ E has the    
largest bin id w < Ss 

    2. Add [Es, pa] to S, where [w, pa] ∈ S ∪ E has the   
largest bin id w < Es 

/* the update operation depends on the aggregate-
function; for example, if aggregate-function = count, 
the update operation is +1 */ 

    3. For each [w, pa] in S ∪ E where Ss ≤ w < Es update 
pa using t 

ProcessPunctuation (p) 

    1. Output each [w, pa] in S with w < p.wid and remove it 
from S 

Figure 6: The Aggregate Operator Implementation 
for Slide-by-tuple Window 



[17] present methods for reordering data on the fly to give certain 
sets of tuples processing priority.  

To further understand the nature of disorder, we obtained network 
flow data from the Abilene Observatory, a consortium using a 
high-performance (Internet2) network to study advanced Internet 
applications [1]. In networking terminology, a network flow is a 
connection between a source IP address and port and a destination 
IP address and port. A flow comprises one or more packets, 
which each have a timestamp and size (among other information). 
Each flow has a start and end time, which are the min and max 
timestamps of packets in the flow.  

Figure 7 shows a scatter plot of the stream of all netflow records 
emitted by a router in the Abilene Network [1]. Each netflow 
record is associated with a network flow. The x-axis is the 
position of the packet in the stream, and the y-axis is network 
flow start time. The graph shows an ascending set of disjoint 
blocks, with data points scattered apparently at random in each 
block. The reason for the surprising shape of this graph is that 
each minute the router outputs all its netflow records. At this 
point, it purges its cache of netflow records and starts over. Thus 
a block represents the records emitted during a cache purge; the 
order within a block may be related to the structure of the router 
hash table. Note that a flow that spans a block boundary is 
represented in two separate blocks as two separate netflow 
records.  

Many stream systems handle disorder by assuming there is a fixed 
bound on disorder. However, from the disorder pattern shown in 
Figure 7, it is clear that a fixed bound on disorder is not a good 
match to this pattern. Setting the bound to less than a minute will 
drop many tuples; setting the bound to a minute will 
accommodate the disorder but unduly delay result output. What 
makes more sense is for the router to output a message—a 
punctuation perhaps—to indicate it has completed a cache purge. 

7.2 Disorder Handling: Punctuation 
We leverage punctuation for flexibility in handling of disorder. 
Order is important in detecting when all tuples participating in a 
window extent have arrived, and the result for that extent can be 
released. For example, if one assumes that data arrives in order, 
detecting the end of window extents can be done by inspecting 
tuple timestamps; one can assume that a window extent from 
12:00-12:05 is complete when a tuple with a timestamp greater 
than 12:05 has arrived. However, if only tuples from the same 
sensor are guaranteed to be in order, the situation is more complex. 
We need to see a tuple with timestamp greater than 12:05 from 
every sensor to know the extent is complete. Another option, 
called slack, allows disorder within a specified bound. For 
example, the BSort operator of Aurora [2] assumes that tuples 
will be out of order by no more than N positions and maintains a 
buffer of size N to reorder the input stream. BSort produces an 
ordered stream; any tuples that are more than N positions out of 
order are dropped.  

Rather than develop different implementation techniques to handle 
different disorder patterns and policies, we localize the processing 
related to disorder into a single operator generating punctuation, 
and then use punctuation-aware (but disorder-unaware) operators 
[16] elsewhere. The punctuating operator can incorporate other 
techniques for dealing with order and disorder we have seen so far. 
It can use knowledge of stream order or sub-stream order as 
described in the example above to generate punctuation. The 
information that no tuple will be more than N tuples or S seconds 
out of order can be exploited to generate punctuation. A policy 
that no tuple more than S seconds late can be used by the 
punctuating operator to generate punctuation and filter tardy 
tuples. Notifications from stream sources, such as the router from 
Figure 7, can be converted into punctuation. The further advantage 
to dealing with disorder through punctuation is that we can 
process tuples in arrival order, thus avoiding latency and space 
costs associated with approaches that buffer and reorder input. 

Heartbeats are an alternative approach for handling disorder, 
proposed by Srivastava and Widom [14]. Heartbeats are in effect 
punctuations on timestamp. Their paper proposes several 
methods for generating heartbeats; these methods could be 
incorporated into a punctuationg operator and are complementary 
to our work. 

8. PERFORMANCE STUDY 
We tested the effectiveness and efficiency of WID by conducting 
two sets of experiments: 1) The first experiment compares the 
execution time performance for sliding windows using WID, and 
the buffering approach—the existing technique that materializes 
each window extent and computes the aggregate over it; 2) The 
second and third experiments compare the latency and accuracy of 
evaluating queries over streams with different disorder-patterns 
using WID with punctuations arising from the data source (i.e., 
external punctuation), and slack implemented using punctuation. 
Our experiments were conducted on an Intel® Pentium® 4 2.40 
MHz machine, running Linux 7.3, with 512MB main memory. 
The data size for the experiments was approximately 35 MB. 

Figure 7: Block-sorted Disorder 



8.1 Experimental Data Generation 
We implemented a data generator to generate tuples with 
increasing timestamps loosely based on the XMark data generator 
[18]. The schema of the data is easily mapped to traffic speed 
readings. The first experiment uses the data in generated order. 
The second set of experiments uses bounded-disorder and block-
sorted-disorder data sets. To simulate the bounded-disorder 
distribution, we first took ten data sequences (each of them with 
bounded-disorder) resulting from applying a network analysis tool 
[11] over TCP header traces. To get a large data sequence, we 
concatenated randomly chosen copies of the ten data sequences. 
To simulate punctuations from the data source, we pre-processed 
the disordered data and inserted punctuations into the data. To 
simulate the block-sorted-disorder distribution, we divided the 
tuples into segments of equal length on the timestamp attribute, 
and then randomized the positions of tuples in each segment.   

8.2 Results 
We present the results of the three different experiments. The 
experiments used variations of Q1, and varied the parameters 
according to Table 1. In Table 1, Agg Fcn stands for Aggregate 
Function, R for RANGE and S for SLIDE. 

Table 1: Experimental Parameters 

 
Agg 
Fcn 

Dis-
order 

Slack 
Size 

Slack 
Approach 

R S 

1 max none 0  
4000r
ows 

varies 

2 avg bound varies 
Consistent 
Generous 

64 s 6.4 s 

3 cnt 
block-
sorted 

varies Consistent 600 s 60 s 

 

Execution Time Comparison of WID versus Buffering: For 
Experiment 1, we used the ordered data set and measured the 

execution time cost of using WID and the buffering approach. The 
measured time is in ms. For the window specification we used 
WATTR = row-num, RANGE = 4000 rows, and SLIDE varying 
from 1 to 4000 rows.  

Experiment 1 (Figure 8(a) and (b)) shows that WID in general has 
better time performance than the buffering approach, and the 
comparison favors WID as the ratio of RANGE and SLIDE 
increases. Figure 8(b) is just a zoomed-in version of Figure 8 (a), 
where scan cost is the measured time of scanning the whole data 
set.  

Latency-Accuracy Tradeoffs for Bounded-Disorder: For 
Experiment 2, we used the bounded-disorder data set and 
measured the latency-accuracy tradeoff of using punctuation and 
two types of slack: consistent, and generous. Consistent slack and 
generous slack are our names for two versions of slack [2]. They 
are similar except that consistent slack requires that if a tuple is 
late and must be dropped from one window, it will be dropped 
from all windows it participates in, regardless if it is late for the 

Figure 9: Latency vs. Accuracy Band-Disorder 

(average error percentage) 
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Figure 8 (a): Execution Time: WID versus 
Buffering – Overview 



other windows or not. Generous slack makes no such restriction. 
Average error percentage is the accuracy metric. For consistent 
and generous slack, we vary the amount of slack from 0.32 
seconds through 3.2 seconds and we use RANGE = 64 seconds, 
and SLIDE = 64 seconds. 

Experiment 2 (Figure 9) shows that as slack increases, error 
decreases and latency increases, as expected. It also shows that 
external punctuation has better latency and accuracy than either 
slack mechanism. In addition, generous slack has significantly 
better accuracy at comparable latency when compared to 
consistent slack. 

Latency-Accuracy Tradeoffs for Block-Sorted-Disorder: 
Experiment 3 is similar to Experiment 2, except that we used 
block-sorted disorder (shown in Figure 7), with block duration 490 
seconds. We varied the amount of slack from 0 to 600 seconds and 
used RANGE = 600 seconds and SLIDE = 60 seconds. The 
percentage of incorrect answers is the accuracy metric for Figure 
10. In contrast to Experiment 2, where error decreases and 
accuracy increases as slack increases, for block-sorted disorder 
there is no linear relationship between slack and latency. For the 
block-sorted-disorder data set there is one slack value that has the 
best latency, at the optimal accuracy, as shown in Figure 10, 
which is determined by the relationship between block size and 
window size. In our experiment, the optimal slack is 491 seconds. 
When slack is less than optimal, latency is essentially independent 
of slack. As slack increases above the optimal, latency jumps 
dramatically. In this case, it would be difficult to use slack to tune 
the latency and accuracy of the query as one might hope to do. It 
also shows that external punctuation has better latency and 
accuracy for block-sorted disorder than any slack amount used. 

9. CONCLUSION AND DISCUSSION 
We believe that the work here makes three important 
contributions to the field of data-stream processing: 1) a 
framework for defining window semantics independent of any 
particular operator implementation algorithm; 2) a one-pass query 

evaluation technique for many types of sliding-window aggregates, 
which generally reduces memory space usage and is very flexible 
in handling disorder; 3) an initial investigation on the source, 
nature, and patterns of naturally occurring disorder in data 
streams, and its effects on stream system performance with 
different disorder handling strategies.  

We believe that both our framework for window semantics and 
query evaluation approach are scalable and flexible enough to be 
extended beyond window aggregates. In the future, we plan to 
apply them on window join and multi-dimensional window 
aggregates. 
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