
Semantics and Evaluation Techniques for Window
Aggregates in Data Streams

Jin Li1, David Maier1, Kristin Tufte1, Vassilis Papadimos1, Peter A. Tucker2
1Portland State University 2Whitworth College

 Portland, OR, USA Spokane, WA, USA

{Jinli, maier, tufte, vpapad}@cs.pdx.edu ptucker@whitworth.edu

ABSTRACT
A windowed query operator breaks a data stream into possibly
overlapping subsets of data and computes results over each.
Many stream systems can evaluate window aggregate queries.
However, current stream systems suffer from a lack of an explicit
definition of window semantics. As a result, their implementations
unnecessarily confuse window definition with physical stream
properties. This confusion complicates the stream system, and
even worse, can hurt performance both in terms of memory usage
and execution time. To address this problem, we propose a
framework for defining window semantics, which can be used to
express almost all types of windows of which we are aware, and
which is easily extensible to other types of windows that may
occur in the future. Based on this definition, we explore a one-pass
query evaluation strategy, the Window-ID (WID) approach, for
various types of window aggregate queries. WID significantly
reduces both required memory space and execution time for a large
class of window definitions. In addition, WID can leverage
punctuations to gracefully handle disorder. Our experimental
study shows that WID has better execution-time performance
than existing window aggregate query evaluation options that
retain and reprocess tuples, and has better latency-accuracy
tradeoff performance for disordered input streams compared to
using a fixed delay for disorder handling.

1. INTRODUCTION
Many types of data present themselves in stream format:
environmental sensor readings, network monitoring data,
telephone call records, traffic sensor data and auction bids, to
name a few. For applications monitoring and processing streams,
window aggregates are an important query capacity. A window
specifies a moving view that decomposes the stream into
(possibly overlapping) subsets that we call window extents, and
computes a result over each. (Think of a window specification as a
“cookie cutter” and window extents as cookies cut with it.) For

example, “compute the number of vehicles on I-95 between
milepost 205 and milepost 245 over the past 10 minutes; update
the count every 1 minute” is a window aggregate query where
successive window extents overlap by 9 minutes.

Evaluating window aggregate queries over streams is non-trivial.
The potential for high data arrival rates, and huge data volumes,
along with near real-time requirements in many stream
applications make memory and execution-time performance of
stream query evaluation critical. Bursty and out-of-order data
arrival raises problems with detecting the boundaries of window
extents. Out-of-order data arrival also complicates the process of
determining the content of window extents and can lead to
inaccurate aggregate results or high latency in the output of the
results. We have observed that accommodating out-of-order data
arrival can introduce much complexity into window query
evaluation.

We see two major issues with current stream query systems that
process window queries. One is the lack of explicit window
semantics. As a result, the exact content of each window extent
tends to be confused with window operator implementation and
physical stream properties. The other is implementation
efficiency, in particular memory usage and execution time. To
evaluate sliding window aggregate queries where consecutive
window extents overlap (i.e., each tuple belongs to multiple
window extents), most current proposals for window queries keep
all active input tuples in an in-memory buffer. In addition, each
tuple is reprocessed multiple times—once for each window extent
to which it belongs. We will propose an approach that avoids
intra-operator buffering and tuple re-processing.

In this paper, we present a framework for defining window
semantics and a window query evaluation technique based on it. In
the framework, we define window semantics explicitly—
independent of any algorithm for evaluating window queries. From
our definition, it is clear that many commonly used types of
windows do not depend on physical stream order. However, most
existing window query evaluation techniques assume that stream
data are ordered or are ordered within some bound. Our window
query evaluation technique, called the Window-ID approach
(WID), is suggested by the semantic framework. Our technique
processes each input tuple on the fly as it arrives, without keeping
tuples in buffers and without reprocessing tuples. Our
experimental study shows significantly improved execution-time

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
ACM SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland,

performance over the existing evaluation techniques that buffer
and reprocess tuples.

In contrast to other techniques, another feature of WID is that it
can process out-of-order tuples on the fly as they arrive without
sorting them into the “correct” order. It does not require a specific
type of assumption about the physical order of data in the stream.
Instead, it uses punctuation [16] to encode whatever kind of
ordering information if available. In the later part of the paper, we
examine real-life examples of stream disorder and discuss disorder-
handling methods. Slack [2] and heartbeats [14] are mechanisms
proposed for handling disorder in input streams. Different means
for handling disorder can affect the flexibility, scalability and
performance of window query evaluation approaches. We
experimentally evaluated latency-accuracy tradeoffs of handling
disorder using WID and using sort-based slack.

This paper is organized as follows: Section 2 provides a running
example that illustrates the basic concepts of WID; Section 3
introduces our framework for defining window semantics; Section
4 presents WID; Section 5 analyzes disorder using network flow
data and discusses mechanisms for handling disorder; Section 6
presents performance results; Section 7 discusses the extensibility
of our work and Section 8 concludes.

2. RUNNING EXAMPLE
We introduce a running example that illustrates the operations
used in WID. Through this example, we show that with WIDs 1)
there is no need to retain input tuples in buffers, although there
may be queues to pass tuples between steps; 2) each tuple is
processed only once at a given operation step; and 3) no
assumptions about the physical order of the input are required.

Consider a radiation detection system that can be installed along
freeways, such as the one under study in the New Jersey
Turnpike Radiation Detection project at Lawrence Livermore
National Lab [12]. A radiation detection system identifies
potentially dangerous vehicles, tracks them as they progress along
the freeway, and targets a vehicle confirmed to have radioactive
material for interception. Figure 1 shows four detection stations

involved in a detection task on I-95 northbound from I-195 to the

Holland Tunnel. While tracking vehicles, it is critical to accurately
forecast travel time between detection stations, so that the system
does not lose track of suspicious vehicles. One way to address
this problem is to estimate the max and min travel time between
stations.

A freeway is separated into non-overlapping segments by adjacent
ramps. Suppose that there exists a speed sensor (such as a pair of
inductive loop detectors commonly found near freeway on-ramps)
per segment along the freeway, and that speed readings are

streamed to a central system, where the min and max speed for
each segment of the freeway over the past five minutes are
computed, and updated periodically. Then, min and max travel
time between stations can be calculated easily and continuously
updated based on the current speed bound for each segment and
the length of the segment.

Suppose the schema of speed sensor readings: <seg-id, speed, ts>,
where seg-id is the segment id and ts is the timestamp for a sensor
reading. We might choose to continuously compute the min and
max speed of each segment by computing the min and max over
the past 5 minutes, and updating the results every minute. We call
this query Q1, shown below in a CQL-like language [3]. Note that

 (seg-id, speed, ts,
wid)
 t1 ' (s5, 47, 12:10:05, 10-
14)
 t2' (s6, 48, 12:10:02, 10-
14)
 t3' (s6, 50, 12:10:30, 10-14)
 p1' (s6, *, *, 10)

tags with
window-ids

group
on seg-
id and

wid seg-id max min

10 s5 47 47
10 s6 50 48
… … … …

14 s5 51 50
14 s6 52 50

 (wid, seg-id, max,
min)
 m1 (10, s6, 47, 47)
 m2 (10, s5, 50, 48)

 (seg-id, speed, ts)
 t1 (s5, 47, 12:10:05)
 t2 (s6, 48, 12:10:02)
 t3 (s6, 50, 12:10:30)
 p1 (s6, *, 12:11:00)
 t4 (s5, 46, 12:10:30)
p2 (s5, *, 12:11:00)
 … …

SUSPECT

PRESUMPTIVE

CONFIRMED

INTERCEPTED

Figure 1: Four detection stations in a detection task

(from Yonnel Gardes, The Transpo Group, Kirkland, WA, with permission)

the time notion (e.g., over the past 5 minutes) in Q1 is defined on
the ts attribute of the sensor readings.

Q1: SELECT seg-id, max(speed), min(speed)
 FROM Traffic [RANGE 300 seconds

 SLIDE 60 seconds
 WATTR ts]
GROUP BY seg-id

Figure 2 shows the steps that WID uses to process Q1. The
details of the operators used for these steps are given in later
sections. The input traffic speed stream, with punctuations,
arrives at the query system. Briefly, a punctuation is information
embedded in a data stream indicating that no more tuples having
certain attribute values will be seen in the stream. For example,
punctuation p1 indicates that no more tuples will arrive from
segment s6 that have a timestamp attribute value less than
12:11:00PM. In our example, we assume that each individual
sensor provides such a punctuation every minute.

As Figure 2 shows, in the first step, each input tuple is tagged
with a range of window-ids. In WID, each window extent is
identified by a unique window-id. In this example, we use non-
negative integers for window-ids. Suppose Q1 starts at
12:00:00PM. Each window extent is a 5 minute sub-stream, which
overlaps with adjacent window extents. In our case, for example,
window extent 10 is the 12:06:00PM – 12:11:00PM sub-stream;
and window extent 11 is the 12:07:00PM – 12:12:00PM sub-
stream. For each input tuple, we can calculate the window-ids for
the window extents to which it belongs. For example, t1 belongs to
window extents 10 through 14. A similar calculation is applied to
punctuations. Each input punctuation, which punctuates on the
seg-id and ts attributes, is transformed into a punctuation on the
seg-id and wid attributes. For example, p1 is transformed into p1' ,
which indicates that no more tuples from the sensor at segment s6
for window extent 10 will arrive. Note that we extend the input
scheme of the speed tuple by adding the wid attribute as an
explicit data attribute. Also note that in step 1, each tuple or
punctuation is processed immediately as it arrives, and is streamed
out immediately after processing.

The second step is an aggregation step where tuples tagged with
window-ids are grouped by the seg-id attribute, as well as the wid
attribute. Note that a tuple tagged with a range of window-ids
represents a set of tuples, each tagged with a single window-id. An
internal hash table is used to maintain the partial max and min
value for each group. Upon the arrival of a punctuation, the hash
entry that matches the punctuation is output and purged from the
hash table. For example, when punctuation p1' arrives, m1 is
output and its corresponding hash entry is cleared.

Overall, introducing window-ids into query execution brings
benefits to both performance and system implementation. It
reduces operator buffer space and execution time; and it
transforms window aggregate queries into group-by aggregate
queries and thus reduces the implementation complexity of the
system. Also observe that it does not need to reorder tuples on ts,

as long as punctuations are placed correctly. WID does require
having calculations for multiple window extents underway
concurrently, but the storage overhead is trivial unless there are
many more window extents than tuples.

3. WINDOW SEMANTICS
As can be seen from our example, key to WID is the association of
tuples with window-ids. In this section we present a semantic
framework that makes this association explicit, independent of
any particular operator implementation. In Section 4 we return to
window-aggregate evaluation based on this semantics.

3.1 Motivation
In previous work, window semantics often has been described
operationally. However, operational window definitions tend to
lead to confusion of the window extent definition with physical
data properties and implementation details. For example, some
current window query operators process window extents
sequentially— that is, they close the active window when a tuple
past it arrives, which translates into a requirement that their input
arrive in order of the windowing attribute. If the data is not in
order, some sort mechanism such as Aurora’s BSort [2] must be
used to reorder the data. Without a mechanism to explicitly
identify what extents tuples belong to, tuples cannot be processed
in their arrival order (unless it corresponds to window order),
which leads to retaining tuples in the implementation, latency, and
inflexibility of query evaluation.

We propose a semantic framework, and define semantics of
existing types of window under this framework. Our window
semantics definition is independent of any implementation
algorithm. Having explicit window semantics leads directly to a
flexible implementation that can handle a wide variety of windows
and which can handle disordered data in a number of ways. In
addition, an explicit definition makes it easier to verify the
correctness of a window operator implementation.

Note that defining window semantics and implementing the
defined semantics are two separate issues. A window semantics
definition specifies the content of window extents, while
implementation issues, such as determining when to process an
extent (and whether to approximate its actual value), are handled
by separate mechanisms or directives.

3.2 Window Specification
A window specification is a window type and a set of parameters
that defines a window to be used by a query. For example, the
specification of the sliding window in Q1 has parameters: RANGE,
SLIDE and WATTR. In our window semantics, the content of a
window extent is determined by applying a window specification
to a set of input tuples. Our goal of discussing window
specification here is to introduce the parameters used to express
different windows whose semantics will be defined later, but not
to provide a universal specification for all possible windows.
However, our window specification parameters are general enough

to express almost all stream window aggregate queries we have
seen [5, 15].

Our window specification for sliding window aggregate queries
consists of three parameters, RANGE, SLIDE and WATTR,
which specify the length of the window, the step by which the
window moves, and the windowing attribute—the attribute over
which RANGE and SLIDE are specified. For ease of presentation,
we assume the arrival time and the arrival position of tuples in a
stream are explicit attributes arrival-ts and row-num in the input
tuples. In the following, we introduce different types of windows
and their expressions in window specification.

A time-based sliding window query such as Q1 shown in Section
2, is expressed with RANGE = 300 seconds, SLIDE = 60 seconds
and WATTR = ts. (Note that in this example, ts is the timestamp
attribute provided by the sensors and not the arrival timestamp)
Tuple-based sliding window queries are also common. A tuple-
based query uses the row-num attribute of tuples as the WATTR.
For example, consider Q2, which asks “Count the number of
vehicles for each segment over the past 1000 rows, update that
result every 10 rows” and is expressed as:

Q2: SELECT seg-id, count(*)
 FROM Traffic [RANGE 1000 rows

 SLIDE 10 rows
 WATTR row-num]
GROUP BY seg-id

Potentially, WATTR can be any tuple attribute with a totally
ordered domain. Having this option allows us to define windows
over timestamps assigned by external data sources or internally by
the system; to handle a stream with a schema containing multiple
timestamp attributes; and to window over non-temporal tuple
attributes.

Another kind of sliding window is when the RANGE and SLIDE
are specified on different attributes. In such a case, SATTR (slide
attribute) and RATTR (range attribute) are used in place of
WATTR to express the attributes over which SLIDE and RANGE
are specified, respectively. A common example of this type of
query is a query with RANGE over a timestamp (ts, in our
example) attribute (RATTR) and SLIDE 1 row over row-num
(SATTR). In such a case, each tuple arrival introduces a new
window extent that has length RANGE and ends at the newly-
arrived tuple, as shown in query Q3 below. We use the term slide-
by-tuple to refer to this type of windows hereinafter. The window
operator in CQL uses slide-by-tuple windows to transform the
input stream into instantaneous relations.

Q3: SELECT seg-id, count(*)
 FROM Traffic [RANGE 300 seconds
 RATTR ts
 SLIDE 1 row
 SATTR row-num]

A partitioned window aggregate query uses an additional
partitioning attribute, PATTR, to split the input stream into sub-

streams before applying the other parameters in the window
specification to each sub-stream. Q4, shown below, is identical to
Q2 except that seg-id is now a partitioning attribute instead of a
group-by attribute.

Q4: SELECT seg-id, count(*)
 FROM Traffic [RANGE 1000 rows

 SLIDE 10 rows
 WATTR row-num
 PATTR seg-id]

This change in the window specification leads to significant
changes in the window semantics. Q2, a non-partitioned query,
takes a sequence of 1000 tuples from input stream as a window
extent, then divides those 1000 tuples into groups by segment id
and counts the vehicles in each group. In short, Q2 first computes
the window extent and then divides the extent into groups. In
contrast, Q4 first divides a stream into “partitions” (sub-streams)
by the partitioning attribute, and then divides each partition into
window extents independently, based on the other three
parameters in window specification. Note that for time-based
window queries, the PATTR parameter does not bring more
expressive power—the effect of a PATTR attribute is the same as
using it as a group-by attribute [4].

Discussion: Our window specifications are similar to the window
construct in CQL (Continuous Query Language) [3], a SQL-based
language for expressing continuous queries over data streams. Our
window specification differs from it in the use of explicit user-
specified WATTR and SLIDE parameters, whereas the published
version of CQL [3] assumes a “slide-by-tuple” window semantics
and uses a pre-defined timestamp or tuple sequence number as the
windowing attribute.

SQL-99 defines a window clause for use on stored data. SQL-99
limits windows to sliding by each tuple (i.e., each tuple defines a
window extent), thus tying each output tuple to an input tuple.
We call such windows data-driven. In comparison, stream queries
often use domain-driven window semantics where users specify
how far the consecutive window extents are spaced from each
other in terms of domain values [15]. We believe domain-driven
windows are more suitable for applications with bursty or high-
volume data. Consider a network monitoring application—one
possibly wants network statistics updated at regular intervals,
independent of surges or lulls in traffic.

A variation of our window specifications is to use functions in
window specifications. For example, the following query Q5 is a
variation of Q3.

Q5: SELECT seg-id, count(*)
 FROM Traffic [RANGE 300 seconds
 RATTR ts
 SLIDE 5 rows
 SATTR rank(ts)]

The function rank (ts) maps each tuple t in the input stream to its
rank in order of the ts attribute values. So instead of advancing a

window based on tuple arrival order, we advance it based on the
logical order implied by ts. So, the window in Q5 is of the length
300 seconds over the ts attribute, and slides by 5 rows over the
logical order defined by ts. Conceptually, this window suggests
sorting before windowing, similar to the window clause with the
ORDER BY construct defined in SQL-99. In this paper, we only
consider rank(RATTR)—the attribute defining the slide order
needs to agree with the range attribute.

3.3 Window-Ids and Window Extents
We propose a framework to define window semantics by
mappings between window-ids and tuples in both directions. The
framework consists of three functions: windows, extent, and wids.

In this sub-section, we describe windows and extent, over a set of
tuples, T, for each type of window we just discussed. For a given
window type, windows defines the window-ids to use for that
type of window—values from different domains are used as
window-ids for different types of window. The extent function
specifies which tuples belong to the window extent denoted by a
given window-id—the mapping from window-ids to tuples. More
precisely, given a window specification S and the set of tuples T
that compose a stream, windows (T, S) is the set of window-ids
that identify window extents to which tuples in T may belongs.
Given a window-id w ∈ windows (T, S), extent(w, T, S) is the set
of tuples in T belonging to the window extent identified by w. We
require that extent(w, T, S) is finite. Note that T is an unordered,
possibly infinite, logical entity—it is not expected to be
materialized at any point in an implementation.

For ease of presentation, we assume that RANGE, SLIDE and
WATTR (or, SATTR and RATTR) attribute values are all in the
same units. For example in Q1, RANGE and SLIDE are both in
seconds.

For window queries in which RANGE and SLIDE are specified on
the WATTR attribute, such as Q1 or Q2, the window and extent
functions are as below. Here, we use the non-negative integers for
window-ids, which depend on neither T nor S.

[](, , ,) {0,1,2,...}windows T S RANGE SLIDEWATTR = .

[]()
()
() ()

() ()

, , , ,
min ,

{ |max
min 1

. min 1 }

WATTR

WATTR

WATTRWATTR

extent w T S RANGESLIDEWATTR
T

t T
T w SLIDE RANGE

t T w SLIDE

=
 
 ∈  + + ∗ − 

≤ < + + ∗

The extent function is defined using only the WATTR values of
tuples, independent of physical arrival order. In the extent
function, the value minWATTR(T) represents the minimum value
that WATTR takes over all tuples in T. This exact value may be
difficult to measure, but in practice any approximation that is less
than minWATTR(T) is acceptable, and does not affect the window
extent definition. Assuming WATTR values are non-negative
numbers, one can always think of minWATTR(T) as 0. The ‘max’ in
the extent function deals with the boundary cases where the

window “straddles” the minWATTR(T), by permitting “partial”
window extents. For example, in Q1, window extents 0 through 3
are partial, and they are of length 1, 2, 3, 4 minutes respectively.

The windows and extent functions above also apply to tumbling
windows, and naturally extend to landmark windows. Tumbling
window is a special case of sliding windows, where RANGE
equals SLIDE and thus window extents do not overlap. Landmark
windows are similar to sliding windows except that each window
extent starts at the “beginning” of the stream.

Slide-by-tuple window queries, such as Q3, are another type of
sliding-window aggregate queries. For this type of windows, the
number of window extents is data-dependent and we do not use a
simple integer sequence for window-ids. Instead, we use values of
T.RATTR—the projection of input tuples on RATTR—for
window-ids. The windows and extent functions for slide-by-tuple
windows are given below.

windows(T, S[RANGE, RATTR, 1, row-num]) =
 {w | t ∈ T, w = t.RATTR}.

extent(w, T, S [RANGE, RATTR, 1, row-num]) =
 {u ∈ T | w – RANGE < u.RATTR ≤ w}.
Assuming unique RATTR values, each RATTR attribute value
identifies a window extent that ends at that tuple.

A variation on slide-by-tuple windows is windows for which the
SLIDE is n tuples. Here, every nth tuple defines a window extent.
Thus, we use the RATTR-values of every n tuples in T as
window-ids. The extent function is the same as that of slide-by-
tuple windows and the windows function is given by:

windows(T, S[RANGE, RATTR, SLIDE, row-num]) =
 {w | t ∈ T, mod(t.row-num, SLIDE) = 0, w = t.RATTR}.

For windows in which the SLIDE is n tuples over the logical order
of the stream on the RATTR, as shown in Q5, the extent function
is also the same as that of slide-by-tuple windows. The windows
definition uses a rank(t, attr, T) function, which, given a tuple t
and attribute attr, returns t’s rank in T in the order of attr.

windows(T, S[RANGE, RATTR, SLIDE, SATTR]) =
 {w | t ∈ T, mod (rank(t, SATTR, T)), SLIDE) = 0,
 w = t.WATTR}.

For partitioned tuple-based window queries, such as Q4, window-
ids are compound values consisting of a non-negative integer
representing a window extent in a partition and a partitioning
attribute value.

() { (,) | {0,1,2,...}, . }windows T i p i p TPATTR= ∈ ∈ .

Here T.PATTR means the projection of T on PATTR. The extent
function in this case determines the content of the window extent
based both on its integer index and partitioning attribute value. In
the extent function definition, we use the function rank(t, attr, p,
T), which given a tuple t, an attribute attr, a partitioning attribute
p, and a set of tuples T, returns t’s rank in the p partition of T, in
the order of attr. For example, rank(t, row-num, PATTR, T) in the

following extent function returns tuple t’s arrival position in the
partition to which it belongs, i.e., t.PATTR.

extent ((i, p), T, S[RANGE, SLIDE, row-num, PATTR]) =
 {t∈T | t.PATTR = p,

()
() ()

min ,
max

min 1 *

WATTR

WATTR

T

T i SLIDE RANGE

 
 
 + + − 

≤

 rank(t.row-num, PATTR, T) < min WATTR(T) +
(i+1)*SLIDE}.

3.4 Mapping Tuples to Window-ids
The extent function defines window semantics in a window-centric
way from the perspective of understanding the content of each
window extent. In this section, we define the function, wids,
which is a relational inverse to the extent function, and maps each
input tuple to a set of window-ids (representing window extents).
The wids function provides the same window semantics
information, in tuple-centric manner. Intuitively, this tuple-centric
version of the window semantics definition corresponds to
operations on each input tuple in the implementation. For a given
window type, let W = windows (T, S). Then, for a tuple t, wids (t,
T, S) is the set of window-ids in W, identifying window extent to
which tuple t belongs: wids (t, T, S) = {w∈W | t ∈ extent(w)}.

The wids function for non-partitioned windows whose RANGE
and SLIDE are both specified on the WATTR attribute, such as
Q1 and Q2, is defined as follows:

wids (t, T, S[RANGE, SLIDE, WATTR]) =
 {w∈W | (t.WATTR – minWATTR(T)) / SLIDE – 1 < w
 ≤ (t.WATTR + RANGE – minWATTR(T)) / SLIDE –1}.

Note that in the wids function above, a tuple t is mapped to a set
of window-ids, without reference to other tuples nor to t’s arrival
position in T.

For slide-by-tuple windows such as Q3, and its two variations,
the wids function is given by:

wids (t, T, S[RANGE, RATTR, 1, row-num]) =
 { w∈W | t.RATTR = w < t.RATTR + RANGE}

Here, the window-ids of window extents to which tuple t belongs
fall between t.RATTR and t.RATTR+RANGE.

For partitioned tuple-based windows, the wids function is given
below, where r = rank (t, row-num, PATTR, T):

wids (t, T, S[RANGE, row-num, PATTR]) =
 {(i, p)∈W | t.PATTR = p, (r – minrow-num(T)) / SLIDE – 1 <
 w ≤ (r + RANGE – minrow-num(T)) / SLIDE –1}.

The correctness of each wids definition can be verified using
corresponding extent definition. We have proved the inverse
relationship of extent and wids pairs discussed. The proof consists
of two cases, based on whether minWATTR(T) is greater than
minWATTR(T)+(w+1)*SLIDE–RANGE.

Discussion: Our window specification is quite expressive, and
the semantic framework suggests a general way to define window

semantics. We have discussed existing types of windows that we
have seen. However, well-defined windows in our window
specification are not guaranteed to be meaningful; further, wids
functions of well-defined windows might not be computable. It
remains an open question and future work for us to characterize
the functions used in the framework in order to guarantee a
feasible implementation of wids function.

4. BEYOND SEMANTICS: Towards Window
Query Evaluation
To map from a tuple to a set of window-ids, the wids functions
for different types of windows require different information. In
this section, we categorize different types of information that may
be required in mapping tuples to sets of window-ids, and classify
windows based on this requirement. That categorization in turn
helps dictate the appropriate implementation techniques for given
types of windows.

We define two types of “context” information that may be
involved in the implementation of a wids function: backward-
context and forward-context. Given a tuple t, its backward-context
is information about tuples that have arrived before t. Forward-
context is information about tuples that will arrive after t. If a wids
function requires backward-context, it implies that the
implementation will need to maintain information about
previously arrived tuples. For example, the implementation of a
partitioned tuple-based window must maintain a count of tuples
that have arrived for each partition. Typically, having to maintain
backward-context is not a significant restriction, and does not
prevent one from determining window-ids immediately upon tuple
arrival. In contrast, if a wids function requires forward-context,
then information from tuples arriving after a tuple t is required to
calculate the window-ids for t. This requirement implies that the
exact window-ids for tuple t cannot all be determined until those
tuples arrive. Thus a wids function requiring forward-context
implies that tuples may need to be buffered and delayed. Slide-by-
tuple windows require forward-context. The rank function in the
wids definition for partitioned windows (e.g., Q4) reflects a
backward-context requirement, because rank uses row-num as the
attribute to define order on; and using the RATTR-values of later
tuples (i.e., t.RATTR = w < t.RATTR + RANGE) in the wids
definition for slide-by-tuple windows (e.g., Q3) reflects a forward-
context requirement.

We categorize windows into FCF (forward-context free), and FCA
(forward-context aware), primarily based on their forward-context
requirements (Characterizing each category is an interesting open
question). We define a window as FCF if the wids implementation
does not require forward-context. Time-based windows, tuple-
based sliding windows, and partitioned tuple-based windows are
FCF. We define a window as FCA (forward-context aware) if the
wids implementation requires forward-context. Slide-by-tuple
windows and its two variations (slide by n tuples over row-num
and rank(RATTR), respectively) are FCA. Under the FCF
category, we define a window as CF (context free) if the

implementation of its wids mapping requires neither forward- nor
backward-context. Tuple-based and time-based sliding windows
are CF. The wids function of a CF window maps each input tuple
to a set of window-ids only based on the window specification
and the tuple itself, and correspondingly in the implementation,
window-ids for each tuple can be determined as the tuple arrives
and no state needs to be maintained. We proceed to discuss the
implementation details for different categories of windows.

5. FCF WINDOWS: the WID Approach
We present our evaluation techniques for window aggregate
queries, WID, for FCF windows in this section, and for FCA
windows in the next section. WID is a direct application of our
window semantics definition, and of the wids function in
particular. By using window-ids in the implementation, WID
encapsulates window semantics in the operation that tags tuples
with window-ids, and explicitly transforms the window semantics
of queries into data semantics via a wid attribute.

Due to its explicit definition and implementation of window
semantics, WID provides one-pass query evaluation for sliding
window aggregate queries, eliminating the need to retain input
tuples in intra-operator buffers, and greatly reducing memory
usage during query evaluation. WID is very flexible and scalable.
The implementation does not put constraints on physical
properties of the input streams. For example, other window
aggregate algorithms require the data be sorted before being
aggregated. In contrast, WID does not have such constraints. In
addition, the aggregation step is window-agnostic, since wid is
treated as any other attribute, and the implementation of the
window semantics is easy to manage and verify. We proceed to
describe the system in which we implemented WID, and then
discuss WID in detail for FCF windows.

5.1 System Overview and Punctuation
Our implementation of WID is based on an extended version of
Niagara Query Engine [10] for processing data streams. Niagara
was initially developed at the University of Wisconsin-Madison
as a system for querying XML data on the Internet. It is written
in Java and has a push-based (pipelined) query-processing model.
The extended version of Niagara supports data streams by
enhancing Niagara operators to support punctuation [16].

WID leverages punctuations for query execution and disorder
handling. Briefly, a punctuation is a message embedded in a data
stream indicating that a certain subset of data is complete; a
punctuation indicates that no more tuples having certain attribute
values will be seen in the stream. Punctuations are used in stream
query processing to adapt blocking and stateful operators to data
streams. We have defined punctuation behavior for query
operators [16]. Some operators, such as select, simply pass
punctuations through to the next operator in the query plan.
Group-by operators use punctuations to recognize when groups
are complete so they can output results for, and purge state

associated with, those groups. WID uses punctuations to signal
the end of window extents.

The generation and source of punctuations is an interesting
research problem in itself. Punctuations may come from many
sources. In the running example, punctuations come from the
external data source; another common source of punctuations is
operators in the query system. For example, if traffic sensors in
the running example do not provide punctuations, punctuations
can be generated based on the assumption that each traffic sensor
produces sorted data. When the first tuple with a timestamp
greater than 12:11 from segment s6 is received by an operator, that
operator can assume that all data from segment s6 with timestamp
before 12:11 have been received and can promptly generate a
punctuation: (s6, *, 12:11:00), the same as p1 in Figure 2. We can
also generate punctuations based on a slack bound on the maximal
disorder in a data stream [2].

5.2 Query Evaluation for FCF Windows
WID tags tuples with ranges of window-ids, keeps aggregate
operators window-agnostic, and uses punctuation to indicate
when to output results.

5.2.1 Bucket Operator
The first step in WID is to map each tuple explicitly to a set of
window-ids. We introduce a new operator, bucket, that tags each
tuple with its associated window-ids by using the appropriate
wids function. A range of window-ids is appended to each tuple as
a data attribute, wid. Alternatively, a wid value can also be an
explicit set, or tuples can be duplicated with different ids, if
necessary. Figure 3 shows the query plan using WID for Q1, a CF
query. As in Figure 3, the bucket operator takes a window
specification as a parameter.

The implementation of bucket varies for different types of
windows. A key difference is the amount of state that bucket
must maintain. For CF windows, such as Q1 and Q2, bucket does
not need to maintain any state and can append a range of window-

(seg-id, speed, ts)

(s6, 50, 12:10:30) t

(s6, *, 12:11:00) p

(seg-id, speed, ts, wid)

(s6, 50, 12:10:30, 10-14) t

(s6, *, *, 10)

streamscan

 bucket

 (range = 5 minutes
 slide = 1 minute)

 AggrFun (max, min)
(group on seg-id wid)

Figure 3: Query plan for Q1

ids to each input tuple immediately when the tuple arrives at the
bucket operator, since the wids function for an FCF window does
not require forward-context. Bucket also applies a similar
calculation to transform punctuations on WATTR into
punctuations on the wid attribute.

5.2.2 Aggregation
Bucket tags tuples with window-ids; the aggregate operator
processes these tuples to produce an aggregate value for each
window extent. Using wid attribute as an additional grouping
attribute is the key to this aggregation step. Given a tuple t tagged
with a range of window-ids w1–wn (t.wid = w1–wn), the aggregate
operator uses t to update n aggregate values whose wid-values fall
between w1 and wn inclusive. Note that the window specification,
and thus the window semantics, is not exposed to the aggregate
operator. However, we have extended the aggregate operator to
understand range values.

The aggregate operator must detect when each window extent is
complete and then output the result for that extent. Detecting the
ends of window extents is particularly challenging when the input
stream is disordered, or when the data arrival rate is bursty or
slow [7] because disordered input streams may lead to incomplete
window extents, and bursty or slow streams may result in a high
delay in outputting results. In WID, we use punctuations to
indicate the ends of extents. When the aggregate operator receives
a punctuation, it outputs the results for the matching window
extents and purges the corresponding state.

Using punctuations to convey end-of-extent messages transforms
the complexity of detecting the end of window extents into the
generation of punctuations. In contrast to hardwiring arrival order
information or assumptions into the implementation, using
punctuation to signal the ends of window extents is more flexible.
The correctness of punctuations affects the accuracy of results,
and the regular arrival of punctuations can reduce the delay in
outputting results. Delays in punctuation arrival delay the result,
and increase the state that the aggregate operator must keep, but
do not affect the correctness of results.

5.2.3 Discussion
Compared to existing techniques that retain and reprocess input
tuples, WID reduces both buffer space and execution time, as our
experimental results in Section 8 attest. The main space savings
come from never explicitly materializing window extents, but
instead maintaining partial aggregates for multiple extents
simultaneously—almost always a beneficial tradeoff. For example,
if RANGE is 60 minutes, and SLIDE is 5 minutes, current
window query evaluation algorithms would buffer one hour’s
worth of tuples; in contrast, WID needs to buffer only 12 (= 60/5)
aggregate values—one for each active window extent. Secondary
space savings come from avoiding any buffer space devoted to
sorting out-of-order tuples. The tuples can be tagged and
processed as they arrive. The only offsetting expense is
sometimes retaining a few more aggregate values for incomplete

window extents. The main time saving comes from handling each
tuple once, and recording its contribution to all its window extents
at that time, rather than revisiting it multiple times.

One optimization possible with WID we investigated is to pre-
aggregate tuples on panes (sub-windows), and then consider those
pane aggregates to get full window aggregates [9]. Using panes
with WID leads to further execution-time savings, due to
computation sharing among consecutive windows. In addition,
using panes to evaluate holistic aggregates [6] can reduce
execution-time, which plain WID do not.

6. FCA WINDOWS: the WID Approach
Recall that a FCA window has a wids function that requires
forward-context; that is for a tuple t, determining the set of
window extents to which t belongs requires information from
tuples arriving after t. In many implementations, the requirement
of forward-context leads to buffering and delaying of tuples. We
propose an algorithm that uses window-id ranges to process
several types of FCA windows, including slide-by-tuple
windows, in one pass. Ours is the only algorithm we know of that
can process FCA windows without buffering and reprocessing
tuples.

We observe that we can further differentiate FCA windows into
FCB (forward-context bounded) and FCU (forward-context
unbounded) windows based on whether we can bound the range of
forward-context the wids function requires. Loosely, for FCB
windows, when a tuple t arrives, we can determine the range of
window-ids for the extents in which t participates, but not all the
exact window-ids. For FCU windows, it is not possible to
determine the range of window-ids for each input tuple as it
arrives.

We first present WID for slide-by-tuple windows, as they are the
most commonly discussed FCA windows. Then we discuss WID
for the two variations of slide-by-tuple windows, which slide by n
tuples over row-num attribute and rank (RATTR), respectively.
The latter is FCU.

6.1 Slide-by-tuple Windows
In WID for FCF windows, the bucket operator tags each tuple
with a range of window-ids and a window-agnostic aggregate
operator computes the results. In WID for FCA windows, the
bucket operator also tags tuples with a window-id range; however
this range has a different meaning and in fact the binding of
window-ids to input tuples is deferred to the aggregate operator.
With this design, we process each tuple only once and handle out-
of-order tuples the same as in-order tuples.

The aggregate operator for slide-by-tuple windows requires a more
sophisticated design as will be described below. We avoid retaining
and re-processing tuples by maintaining partial aggregates for
extents and by using these partial aggregates to initialize partial
aggregates for new extents.

6.1.1 Example
For FCA windows we know we cannot calculate a set of window-
ids for a tuple t upon t’s arrival since this would require
information about tuples arriving in the future. However, careful
examination of the wids function for slide-by-tuple windows
reveals that we can determine the range into which these window-
ids will fall. For example, given the range of a slide-by-tuple
window, RANGE, and a tuple t with t.RATTR = s, the set of
windows-ids to which t is mapped fall into the range [t.RATTR,
t.RATTR + RANGE), and thus bucket will tag t with this range.
Recall that for slide-by-tuple windows and variations, we use
RATTR values as window-ids.

We proceed to consider how the aggregate operator works. For
each input tuple t with t.RATTR = s, the first window extent t
belongs to is s: {u ∈ T | s – RANGE < u.RATTR ≤ s}, which ends
with the arrival of t. We define an auxiliary extent for t, s +
RANGE: {u ∈ T | s < u.RATTR ≤ s + RANGE}, which is the
earliest subsequent extent to which t does not contribute. (Note
that an auxiliary extent need not correspond to an actual tuple in
T.) For ease of presentation, we denote the window extent s and
the auxiliary extent s + RANGE of tuple t as Ss and Es
respectively, and refer to them as bins collectively. One can think
of Ss and Es as the “start bin” and “end bin”, respectively. We use
B to refer to the wid for bin B, i.e, Ss = s and Es = s+ RANGE.

Figure 4 shows the processing of a slide-by-tuple query where the
aggregate is count, the RATTR is A, and RANGE is i. We depict the

bins as laid out in order of the A attribute, with a bin B associated
with the position of its B. We mark the region to the right of the
end of the bin, up to the end of the next bin with the partial
aggregate value for the bin. For example, in Figure 4(d), the partial
aggregate for Es1 is 2 and for Ss4 is 3. The reason we label regions
in this way is to indicate that any extent whose wid is in the
region would have that contribution to its partial aggregate from
tuples contributed to that bin. Thus, an extent for wid s, where
Es1 ≤ s < Ss4, would have a contribution of 2 to its count from
tuples in Figure 4(d). We consider the arrival of tuples t1 – t5,
where si = ti.A. We start with an initial bin, init, with count = 0.
The arrival of t1 adds bins Ss1 and Es1 (Figure 4(a)), with initial
values 1 and 0, respectively. Tuple t2 with s2 > s1 starts bins Ss2
and Es2, with Ss2 set initially to the value of Ss1 plus 1, and Es2
initialized to Es1 (Figure 4(b)). Es1 is incremented by 1, to reflect
the contribution of t2. Figure 4(c) show the effect of t3, where s3
> s2: Ss3 and Es3 are created and initialized, and Es1 and Es2 are
incremented. Figure 4(d) shows the need for E-bins: Ss4 is
initialized from Es1, reflecting the contribution of t2 and t3, but
with t1 out of the extent for Ss4. Finally, Figure 4(e) shows the
arrival of an out-of-order tuple t5, with s1 < s5 < s2. Ss5 is
initialized from Ss1 and Es5 from Es1, with bins Ss2, Ss3 and
Es1incremented. If at this point, punctuation arrives indicating
future WATTR-values are greater than s2, the operator can emit the
aggregate values for Ss1, Ss5 and Ss2 (and discard Ss1 and Ss5).

Figure 5 shows the general case for the arrival of tuple tn, when
(Ssn, Esn) spans bins B1, B2, …, Bm. Bins B1 and Bm are “split”
and used to initialize Ssn and Esn; every bin Bi, 1 < i ≤ m is also
updated.

Figure 5: Bin updates for arrival of tuple tn.

6.1.2 Algorithm
In this section, we present the algorithms used by the bucket and
the aggregate operator in WID for slide-by-tuple window queries.

The implementation of bucket is straightforward. For each tuple t,
where t.RATTR = s, it adds an attribute t.wid = (Ss, Es) giving the
maximal range of window-ids for extents to which it belongs. It
also transforms punctuations on RATTR to punctuations on wid.

Figure 4: Example of insertion, initialization, and
update of bins as new tuples arrive.

Figure 6 contains pseudo-code for the aggregate operator. The
aggregate operator needs to store partial aggregates for bins that
are not expired. Initialize sets up the special “init” bin, labeled
with -∞. ProcessTuple sets up new start and end bins for each
arriving tuple, then updates appropriate bins. ProcessPunctuation
outputs results and purges appropriate bins.

Our WID implementation for slide-by-tuple windows does not
retain and reprocess tuples; and it accommodates out-of-order
tuples. For slide-by-tuple windows, we avoid reprocessing tuples
at the cost of maintaining auxiliary extents (end bins). On the other
hand, our approach does not need space to retain input tuples.
Therefore, our approach still compares favorably to the existing
buffering approaches with regards to buffer space and execution-
time performance. In addition, as WID maintains partial aggregates
for active window extents incrementally, the latency of outputting
results is kept low.

6.1.3 Variations
This approach can be extended to variations of slide-by-tuple
windows, no tuple needing to be retained and reprocessed, again
with the cost of maintaining partial aggregates for additional
extents. The bucket operator for these two variations is the same
as the bucket for slide-by-tuple windows. We first discuss the
variation that slides over the row-num attribute, which is a FCB
window.

For each tuple t with t.RATTR = s, the ProcessTuple function in
the aggregate operator still maintains partial aggregates for two
bins, Ss and Es; but it stores the t.row-num with the two partial
aggregates for it, e.g., [Ss, t.row-num, pa]. The ProcessPunctuation
function only outputs the aggregates for the required window
extents.

For the variation that slides over the tuple count of the logically-
ordered input stream over RATTR, the ProcessTuple function
stores the current tuple count of t with the partial aggregates, e.g.,
[Ss, tup-cnt, pa]. The stored tuple count is updated as a new tuple
arrives. The ProcessPunctuation function is the same as the
function for windows that slide over tuple’s row-num attribute.

In summary, just as for slide-by-tuple windows, WID for these
two variations processes each tuple only once, and handles
disordered input; but it needs to maintain extra partial aggregates.
In particular, for the second variation, although its wids function
definition uses rank over RATTR attribute, it potentially requires
global information over the entire stream, using punctuations
unblocks this “sort” requirement in the implementation.
Therefore, comparing the space and time performance of WID
with the buffering approach, there is a tradeoff between these two
on internal space usage versus execution-time and output latency.
For example, when a stream is slow and the slide is large, the
buffering approach might outperform WID in terms of internal
space usage. However, execution-time is normally a more critical
requirement for stream applications.

7. DISORDER
Out-of-order tuples can cause both accuracy and latency problems
in window query evaluation. In this section, we first discuss
sources of disorder; then we examine information that can be used
to handle disorder and compare different ways of incorporating
the information into an implementation. Because of the non-
uniform disorder patterns and the different types of information
that need to be used to handle disorder, it is important that a
disorder-handling mechanism be flexible, while retaining efficiency.

7.1 Disorder
There are various causes of disorder in data streams. Two simple
causes are merging unsynchronized streams and network delays.
In addition, query processing—join processing in particular—may
introduce disorder [8]. Further, stream data may appear disordered
when a window is defined on an attribute other than the natural
ordering attribute. For example, network flow records typically
have a start time and an end time; records typically arrive in end-
time order, but some network flow queries define windows on
start time [5]. Finally, data prioritization can create significant
disorder. For example Raman et al. [13] and Urhan and Franklin

State

We maintain two collections, S and E, each storing pairs
of the form [wid, pa] where pa is the partial aggregate for
bin with window-id wid. S stores start bins and E stores
end bins.

Initialize ()

 /* aggr-init depends on the aggregate function; for
example, aggr-init = 0 for count */
/* We use -∞ as the wid value of the init bin*/

 1. add [-∞, aggr-init] to E

ProcessTuple (t)

Let t.wid = (Ss, Es)

 1. Add [Ss, pa] to S, where [w, pa] ∈ S ∪ E has the
largest bin id w < Ss

 2. Add [Es, pa] to S, where [w, pa] ∈ S ∪ E has the
largest bin id w < Es

/* the update operation depends on the aggregate-
function; for example, if aggregate-function = count,
the update operation is +1 */

 3. For each [w, pa] in S ∪ E where Ss ≤ w < Es update
pa using t

ProcessPunctuation (p)

 1. Output each [w, pa] in S with w < p.wid and remove it
from S

Figure 6: The Aggregate Operator Implementation
for Slide-by-tuple Window

[17] present methods for reordering data on the fly to give certain
sets of tuples processing priority.

To further understand the nature of disorder, we obtained network
flow data from the Abilene Observatory, a consortium using a
high-performance (Internet2) network to study advanced Internet
applications [1]. In networking terminology, a network flow is a
connection between a source IP address and port and a destination
IP address and port. A flow comprises one or more packets,
which each have a timestamp and size (among other information).
Each flow has a start and end time, which are the min and max
timestamps of packets in the flow.

Figure 7 shows a scatter plot of the stream of all netflow records
emitted by a router in the Abilene Network [1]. Each netflow
record is associated with a network flow. The x-axis is the
position of the packet in the stream, and the y-axis is network
flow start time. The graph shows an ascending set of disjoint
blocks, with data points scattered apparently at random in each
block. The reason for the surprising shape of this graph is that
each minute the router outputs all its netflow records. At this
point, it purges its cache of netflow records and starts over. Thus
a block represents the records emitted during a cache purge; the
order within a block may be related to the structure of the router
hash table. Note that a flow that spans a block boundary is
represented in two separate blocks as two separate netflow
records.

Many stream systems handle disorder by assuming there is a fixed
bound on disorder. However, from the disorder pattern shown in
Figure 7, it is clear that a fixed bound on disorder is not a good
match to this pattern. Setting the bound to less than a minute will
drop many tuples; setting the bound to a minute will
accommodate the disorder but unduly delay result output. What
makes more sense is for the router to output a message—a
punctuation perhaps—to indicate it has completed a cache purge.

7.2 Disorder Handling: Punctuation
We leverage punctuation for flexibility in handling of disorder.
Order is important in detecting when all tuples participating in a
window extent have arrived, and the result for that extent can be
released. For example, if one assumes that data arrives in order,
detecting the end of window extents can be done by inspecting
tuple timestamps; one can assume that a window extent from
12:00-12:05 is complete when a tuple with a timestamp greater
than 12:05 has arrived. However, if only tuples from the same
sensor are guaranteed to be in order, the situation is more complex.
We need to see a tuple with timestamp greater than 12:05 from
every sensor to know the extent is complete. Another option,
called slack, allows disorder within a specified bound. For
example, the BSort operator of Aurora [2] assumes that tuples
will be out of order by no more than N positions and maintains a
buffer of size N to reorder the input stream. BSort produces an
ordered stream; any tuples that are more than N positions out of
order are dropped.

Rather than develop different implementation techniques to handle
different disorder patterns and policies, we localize the processing
related to disorder into a single operator generating punctuation,
and then use punctuation-aware (but disorder-unaware) operators
[16] elsewhere. The punctuating operator can incorporate other
techniques for dealing with order and disorder we have seen so far.
It can use knowledge of stream order or sub-stream order as
described in the example above to generate punctuation. The
information that no tuple will be more than N tuples or S seconds
out of order can be exploited to generate punctuation. A policy
that no tuple more than S seconds late can be used by the
punctuating operator to generate punctuation and filter tardy
tuples. Notifications from stream sources, such as the router from
Figure 7, can be converted into punctuation. The further advantage
to dealing with disorder through punctuation is that we can
process tuples in arrival order, thus avoiding latency and space
costs associated with approaches that buffer and reorder input.

Heartbeats are an alternative approach for handling disorder,
proposed by Srivastava and Widom [14]. Heartbeats are in effect
punctuations on timestamp. Their paper proposes several
methods for generating heartbeats; these methods could be
incorporated into a punctuationg operator and are complementary
to our work.

8. PERFORMANCE STUDY
We tested the effectiveness and efficiency of WID by conducting
two sets of experiments: 1) The first experiment compares the
execution time performance for sliding windows using WID, and
the buffering approach—the existing technique that materializes
each window extent and computes the aggregate over it; 2) The
second and third experiments compare the latency and accuracy of
evaluating queries over streams with different disorder-patterns
using WID with punctuations arising from the data source (i.e.,
external punctuation), and slack implemented using punctuation.
Our experiments were conducted on an Intel® Pentium® 4 2.40
MHz machine, running Linux 7.3, with 512MB main memory.
The data size for the experiments was approximately 35 MB.

Figure 7: Block-sorted Disorder

8.1 Experimental Data Generation
We implemented a data generator to generate tuples with
increasing timestamps loosely based on the XMark data generator
[18]. The schema of the data is easily mapped to traffic speed
readings. The first experiment uses the data in generated order.
The second set of experiments uses bounded-disorder and block-
sorted-disorder data sets. To simulate the bounded-disorder
distribution, we first took ten data sequences (each of them with
bounded-disorder) resulting from applying a network analysis tool
[11] over TCP header traces. To get a large data sequence, we
concatenated randomly chosen copies of the ten data sequences.
To simulate punctuations from the data source, we pre-processed
the disordered data and inserted punctuations into the data. To
simulate the block-sorted-disorder distribution, we divided the
tuples into segments of equal length on the timestamp attribute,
and then randomized the positions of tuples in each segment.

8.2 Results
We present the results of the three different experiments. The
experiments used variations of Q1, and varied the parameters
according to Table 1. In Table 1, Agg Fcn stands for Aggregate
Function, R for RANGE and S for SLIDE.

Table 1: Experimental Parameters

Agg
Fcn

Dis-
order

Slack
Size

Slack
Approach

R S

1 max none 0
4000r
ows

varies

2 avg bound varies
Consistent
Generous

64 s 6.4 s

3 cnt
block-
sorted

varies Consistent 600 s 60 s

Execution Time Comparison of WID versus Buffering: For
Experiment 1, we used the ordered data set and measured the

execution time cost of using WID and the buffering approach. The
measured time is in ms. For the window specification we used
WATTR = row-num, RANGE = 4000 rows, and SLIDE varying
from 1 to 4000 rows.

Experiment 1 (Figure 8(a) and (b)) shows that WID in general has
better time performance than the buffering approach, and the
comparison favors WID as the ratio of RANGE and SLIDE
increases. Figure 8(b) is just a zoomed-in version of Figure 8 (a),
where scan cost is the measured time of scanning the whole data
set.

Latency-Accuracy Tradeoffs for Bounded-Disorder: For
Experiment 2, we used the bounded-disorder data set and
measured the latency-accuracy tradeoff of using punctuation and
two types of slack: consistent, and generous. Consistent slack and
generous slack are our names for two versions of slack [2]. They
are similar except that consistent slack requires that if a tuple is
late and must be dropped from one window, it will be dropped
from all windows it participates in, regardless if it is late for the

Figure 9: Latency vs. Accuracy Band-Disorder

(average error percentage)

Figure 8 (b): Execution Time: WID versus
Buffering – Zoom-in

Figure 8 (a): Execution Time: WID versus
Buffering – Overview

other windows or not. Generous slack makes no such restriction.
Average error percentage is the accuracy metric. For consistent
and generous slack, we vary the amount of slack from 0.32
seconds through 3.2 seconds and we use RANGE = 64 seconds,
and SLIDE = 64 seconds.

Experiment 2 (Figure 9) shows that as slack increases, error
decreases and latency increases, as expected. It also shows that
external punctuation has better latency and accuracy than either
slack mechanism. In addition, generous slack has significantly
better accuracy at comparable latency when compared to
consistent slack.

Latency-Accuracy Tradeoffs for Block-Sorted-Disorder:
Experiment 3 is similar to Experiment 2, except that we used
block-sorted disorder (shown in Figure 7), with block duration 490
seconds. We varied the amount of slack from 0 to 600 seconds and
used RANGE = 600 seconds and SLIDE = 60 seconds. The
percentage of incorrect answers is the accuracy metric for Figure
10. In contrast to Experiment 2, where error decreases and
accuracy increases as slack increases, for block-sorted disorder
there is no linear relationship between slack and latency. For the
block-sorted-disorder data set there is one slack value that has the
best latency, at the optimal accuracy, as shown in Figure 10,
which is determined by the relationship between block size and
window size. In our experiment, the optimal slack is 491 seconds.
When slack is less than optimal, latency is essentially independent
of slack. As slack increases above the optimal, latency jumps
dramatically. In this case, it would be difficult to use slack to tune
the latency and accuracy of the query as one might hope to do. It
also shows that external punctuation has better latency and
accuracy for block-sorted disorder than any slack amount used.

9. CONCLUSION AND DISCUSSION
We believe that the work here makes three important
contributions to the field of data-stream processing: 1) a
framework for defining window semantics independent of any
particular operator implementation algorithm; 2) a one-pass query

evaluation technique for many types of sliding-window aggregates,
which generally reduces memory space usage and is very flexible
in handling disorder; 3) an initial investigation on the source,
nature, and patterns of naturally occurring disorder in data
streams, and its effects on stream system performance with
different disorder handling strategies.

We believe that both our framework for window semantics and
query evaluation approach are scalable and flexible enough to be
extended beyond window aggregates. In the future, we plan to
apply them on window join and multi-dimensional window
aggregates.

10. ACKNOWLEDGEMENTS
We thank our reviewers for insightful comments. This work was
supported by NSF grant IIS 0086002.

11. REFERENCES
[1] The Abilene Observatory.

http://abilene.internet2.edu/observatory.

[2] Abadi, D., Carney, D., Çetintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.
Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12, 2 (August 2003).

[3] Arasu, A., Babu, S. and Widom, J. The CQL Continuous
Query Language: Semantic Foundations and Query
Execution. Stanford University Technical Report, October
2003.

[4] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. Models and Issues in Data Stream Systems. In Proc. of the
2002 ACM Symp. on Principles of Database Systems (PODS
2002), June 2002

[5] Cranor, C., Johnson, T., Spatashek, O. Gigascope: A Stream
Database for Network Applications. In Proceedings of the
2003 ACM SIGMOD International Conference on the
Management of Data (SIGMOD 2003) (San Diego, CA, June
2003).

[6] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart,
D., Venkatrao, M., Pellow, F., and Pirahesh, H. Cube: A
Relational Aggregation Operator generalizing Group-by,
Cross-Tab, and Sub-Totals. Data Mining and Knowledge
Discovery 1(1), 1997, 29-53.

[7] Hammad, M., Aref, W., Franklin, M., Mokbel, M., and
Elmagarmid, A.K. Efficient Execution of Sliding Window
Queries over Data Streams. Purdue University Department
of Computer Sciences Technical Report Number CSD TR
03-035, December 2003.

[8] Hammad, M., Franklin, M., Aref, W., and Elmagarmid, A.
Scheduling for shared window joins over data streams. In
Proceedings of the 29th International Conference on Very
Large Databases (VLDB 2003) (September 2003, Berlin,
Germany).

Figure 10: Latency vs. Accuracy Block-Sorted-
Disorder (percentage of incorrect answer)

external
punctuation

[9] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and

Peter A. Tucker. No Pane, No Gain: Efficient Evaluation of
Sliding-Window Aggregates over Data Streams. In SIGMOD
Record, 34, 1 (March 2005).

[10] Naughton, J., DeWitt, D., Maier, D. et al. The Niagara
Internet Query System. http://www.cs.wisc.edu/niagara.

[11] Passive Measurement and Analysis project. San Diego
Supercomputer Center. http://pma.nlanr.net/PMA.

[12] Radiation Detection Center, Lawrence Livermore National
Lab. http://rdc.llnl.gov.

[13] Raman, V., Raman, B., Hellerstein, J.M. Online Dynamic
Reordering for Interactive Data Processing. In Proceedings of
the 25th International Conference on Very Large Databases
(VLDB 1999) (September 1999, Edinburgh, Scotland, UK).

[14] Srivastava, U, Widom, J. Flexible Time Management in Data
Stream Systems. Technical Report 2003-40, Stanford
University, Stanford, CA (July 2003).

[15] Stanford Stream Query Repository. http://www-
db.stanford.edu/stream/sqr.

[16] Tucker, P., Maier, D., Sheard, T. and Fegaras, L. Exploiting
Punctuation Semantics in Continuous Data Streams.
Transactions on Knowledge and Data Engineering, 15, 3
(May 2003).

[17] Urhan, T. and Franklin, M. J. Dynamic Pipeline Scheduling
for Improving Interactive Query Performance. In Proceedings
of 27th International Conference on Very Large Data Bases
(VLDB 2001) (September 2001, Roma, Italy).

[18] XMark Benchmark. http://www.xml-benchmark.org

