
Using Relationship Patterns to Model
Superimposed Information

Sudarshan Murthy, David Maier
Department of Computer Science, Portland State University

http://sparce.cs.pdx.edu

mailto:smurthy@cs.pdx.edu

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 2

The Superimposed System-Information
Browser

• Allows a system (network) administrator to
browse information about computers in a
network
– Applications installed and the modules they use

– Updates applied

– Errors recorded/reported

– Application, system, and security events logged

– User observations/comments

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 3

The Browser

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 4

Observation
Date
Time
Text
User

Event
Date
Time
Kind
Source
Description

Module
Name

Relates to

Update
Title
Description
Reason

Computer
NameRelates to A pplied on

Logged on

Er ror
Date
Time
Source
Description
Notes

Inv olv es

Occurs o n

Application
Name

Uses

A pplies to

Runs on

A pplies to

A Conceptual Schema*

* All entities have key attribute ID (not shown); all relationships are many-many

Date
Time

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 5

Event Log
Date Time Source Description

Some structural variations exist, but information is neatly
in a table

Event
Date
Time
Kind
Source
Description

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 6

Error Reports
Error

Date
Time
Source
Description
NotesDate Time Description

Uniform structure, but mapping is not clean: Date and
Time are both in Time field

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 7

Update
Title Description Reason

Data is heterogeneous and distributed: some data in
XML, some in HTML

Structure varies: support URL not always defined, HTML
page structure varies widely

Update
Title
Description
Reason

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 8

Observations

• Heterogeneous data models and schemas
– Event logs are in MS Excel spreadsheets, Error

reports in MS Word documents

• Distributed sources
– Master list of updates is on the LAN, support

pages are on the web

• The various data are interconnected
– Outlook errors stopped after SP2 was applied

• The conceptual schema hides the
heterogeneity and distribution, yet allows us
to navigate the interconnections

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 9

The Problem

• The conceptual schema hides too much
• It does not make explicit the presence of

external entities (base information) and the
references to those entities (marks)
– One consequence: any logical schema generated

is incomplete (with respect to representation of
information referenced)

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 10

The Proposal

• Use a relationship pattern language to
represent the use of marks
– Identify and describe contexts for relationship

patterns

– Define schema-level and instance-level
constraints

– Fix syntax and semantics of relationship types

– Describe consequences of relationships

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 11

Outline

• Motivation

• Some alternative solutions

• Overview of relationship patterns

• A relationship pattern language to represent
the use of marks

• Conversion to logical model (relational model)

• Querying

• Summary

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 12

Model use of Mark as a Relationship

• Semantics of a relationship are mostly
inferred from its name (and the definition of
participating entities)
– ‘Assign’ relates aircrafts and routes, but under

what conditions should they be related?

• The traditional relationship does not
completely capture the semantics of a mark
– We need to distinguish between inter-layer and

intra-layer relationships

Assign
ID
Distance

ID
Range

Aircraft Route

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 13

ER Relationships Require Entities

• ER relationships are between entities, but
sometimes an attribute carries a reference
(e.g., Update.Title)

• Promoting attributes to entities, to show
relationships, can cause entity proliferation
(reduces comprehension)
– The example schema has 12 such attributes

• Sometimes a group of attributes share a mark
(e.g., Error.Date and Error.Time)
– Can be hard to define a key for an entity created

for a group of attributes

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 14

Attribute Value

• In ER, no dereferencing is involved in
obtaining an attribute’s value, but obtaining a
value from an attribute that uses a mark
involves dereferencing
– E.g., Update.Title is the text excerpt of a mark

• Introducing a new domain such as ‘Mark’
does not suffice
– We need to be able to distinguish between a value

that is a mark and a value obtained using a mark

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 15

Supported Relationships

• Some relationships
have support
– An error applies to an

application based on
information in the details
of the error report

• Traditional
representation would
use a relationship
attribute

Error
Date
Time
Source
Description
Notes

A ppl ies to A pp licatio n
Name

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 16

Superimposed Schematics*

• A superimposed
schematic is an ER
schema over base
information

• One mark may be
associated with an entity
or a relationship

• Relationships cannot
have attributes

• Introduces a Mark value
type (?)

* Bowers, et al. Superimposed Schematics: Introducing E-R Structure for In-Situ Information Selections.

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 17

Our Approach

• Represent the use of a mark as a relationship

• We use relationship patterns to represent the
use of marks
– We define a relationship pattern language (a set of

relationship patterns)

• No need for a ‘mark’ attribute or value type
– That type can be added orthogonally

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 18

Relationship Patterns*

• A relationship pattern is an abstraction of
recurring needs or problems when
establishing relationships in a context; it can
also be a suggested solution to the problems
identified

• A relationship pattern is similar to a software
pattern, except it is focused on relationships

• Like software patterns, inspired by the notion
of patterns in architecture

* Murthy, Maier. A Framework for Relationship Pattern Languages. 2005.

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 19

Example: The Predicated Relationship Pattern

<type>(<predicate>)
• <type> is name of a relationship type;
<predicate> is a pre-condition for a
relationship instance

• E.g., An aircraft can be assigned to a route
only if it can fly at least 25% farther than the
route’s distance

ID
Distance

ID
Range Assign (Range > 1.25*Distance)

Aircraf t Route

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 20

Example: The Computed Relationship Pattern

Computed:<type>(<predicate>)
• Relationship instances are computed (not

stored)
– Traditionally, relationship instances are stored

• Relationship must not have attributes, or they
must be computable

• Creates the Computed typespace
– A typespace is a set of related types

ID
Distance

ID
Range Computed:Assign (Range > 1.25*Distance)

Aircraft Route

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 21

Relationship Signatures

• A relationship pattern defines a syntax to
create the three text parts of a relationship
type: names of typespaces and types, role
names, structure of cardinality constraints

• Each of these three parts is defined using a
signature (formally a grammar)
– E.g., <type>(<predicate>) is a type signature

• The three signatures together are called the
relationship signature

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 22

Why Use Relationship Patterns?

• Solve a kind of problems once

• Describe many relationship types at once

• Understand many relationship types at once

• Customize
– Define how relationships are treated in various

stages of the information life cycle

• Leverage known patterns
– Following a pattern well-understood can ensure

consistency and increase acceptance

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 23

Benefits when Representing Use of Marks

• Provide visual representation of the use of
marks

• Any model element can be associated with
marks (zero or more marks)

• Distinguish between a mark as a value and
the use of a mark

• Provide a means to generate logical schema
for superimposed and base information
– Enables bi-level querying (over superimposed and

base information, as if they are at the same level)

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 24

Representing the Use of Marks

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 25

Where can a Mark be?

• Entity
– E.g., Event

• Relationship
– E.g., ‘Applies to’

• Entity and relationship attribute
– E.g., Update.Title and AppliedOn.Date

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 26

Modeling Marks

• The Mark entity models a mark
– The ID attribute uniquely identifies a mark; all

marks support the function resolve
– The use of a mark is shown as a relationship with

this entity

• All inter-layer relationships are between a
superimposed entity and the Mark entity
– Intra-layer relationships are between entities in a

single layer: superimposed layer or base layer

– Our focus is on inter-layer relationships

Mark

ID

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 27

The Entity-Mark Pattern

• The EMark typespace contains relationship
types that associate entities with marks

• EventDetail associates an Event entity with a
mark

• ‘Logged on’ is a traditional relationship type

1Computer

Name

Event

Date
Time
Kind
Source
Description

Logged on Mark

ID

EMark:EventDetail

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 28

Entity-Mark Details

• Type Signature
EMark:<type>

• Constraints
– Entity type and degree: Any superimposed entity

type; any number of superimposed entity types

– Cardinality: Any

• Semantics
– Superimposed entities are associated with marks

• Consequences
– Conversion to relational model presented later

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 29

The Attribute-Mark Pattern

• The AMark typespace contains relationship
types that associate attributes with marks

• ErrorDetails associates the Description
attribute with a mark

• ErrorTime associates attributes Date and
Time with one mark

1
1Computer

Name
Mark

ID

Error
Date
Time
Source
Description
Notes

Occurs on AMark:ErrorDetails(Description)

AMark:ErrorTime(Date, Time)

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 30

Attribute-Mark Details

• Type Signature
AMark:<type>(a1, a2,…an)

• Constraints
– a1,a2,…an (n>0) are distinct attributes of a

superimposed entity

• Semantics
– All attributes specified are associated with the

same mark (or same bag of marks if cardinality is
greater than 1)

– Associating an attribute with a mark does not
mean its value is obtained using the mark

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 31

Combining AMark Relationship Types

• The AMarks typespace lets you “combine”
many AMark relationship types that involve
the same entity type (but imposes a common
name, and cardinality constraints)

• The ‘Error’ relationship type associates the
Date and Time attributes with one mark, and
the Description attribute with one mark

1Computer

Name
Mark

ID

Error

Date
Time
Source
Description
Notes

Occurs on
AMarks:Error({Date, Time}, {Description})

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 32

AMarks Details

• Type Signature
AMarks:<type>(A1, A2,…An)

• Constraints
– A1,A2,…An (n>0) are non-empty, disjoint sub-sets

of the attributes of a superimposed entity

– Attribute sets may be indicated using braces or
parentheses

• Semantics
– Each set of attributes is associated with one mark

(or a bag of marks)

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 33

Deriving Attribute Values from Marks

• An attribute might always derive its value
from a mark’s context (e.g., excerpt)

• The VAMark and VAMarks typespaces define
relationship types for this purpose

• UpdateDetail associates the value of each of
the attribute Title, Description, and Reason
with the context of a mark

1

Mark

ID

Update
Title
Description
Reason

V A Marks:UpdateDetail((Title), (Description), (Reason))

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 34

VAMark Details

• Type Signature
VAMark:<type>(a1, a2,…an)

• Constraints
– a1,a2,…an (n>0) are distinct attributes of a

superimposed entity

– Cardinality must be 1 (single-valued attributes)

• Semantics
– All attributes specified are associated with one

mark, and their values are derived from that
mark’s context

• Consequences: Requires casting/type checking

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 35

VAMarks Details

• Type Signature
VAMarks:<type>(A1, A2,…An)

• Constraints
– A1,A2,…An (n>0) are non-empty, disjoint sub-sets

of the attributes of a superimposed entity

– Cardinality must be 1

• Semantics
– Each set of attributes is associated with one mark
– Use of context is similar to that in the VAMark

typespace

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 36

The Relationship-Mark Pattern

• Aggregate* the relationship to be associated
with marks (called supported relationship)

• Add an RMark relationship with the aggregate

• The ‘AppliesTo’ relationship type is first
aggregated. RMark:Application associates
the aggregate with marks

* Ramakrishnan and Gehrke. Database Management Systems, 3rd Ed.

RMark:Application

Application
Name

Computer
Name

Update
Title
Description
Reason

Applies toApplied on

Mark

ID

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 37

Avoiding Drawing Aggregates

• We draw a dotted line from the supported
relationship (e.g., ‘Applies to’) to the Mark
entity instead of drawing an aggregate entity
– The dotted line clarifies that the degree of the

supported relationship is unchanged

RMark:Application

Application
Name

Computer
Name

Update
Title
Description
Reason

Applies toApplied on

Mark

ID

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 38

Relationship-Mark Details

• Type Signature
RMark:<type>

• Constraints on the supported relationship
– Can be inter-layer or intra-layer

– Can be of any type, degree, and cardinality

– Can have attributes

• Constraints on RMark relationship type
– Always binary
– Can have attributes

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 39

Associating Relationship Attributes with Marks

• The RAMark typespace contains relationship
types that associate relationship attributes
with marks

• UpdateLog* associates both attributes Date
and Time with one mark

* An update log stores details of applications of updates to computers

Date
Time

RAMark:UpdateLog(Date, Time)

1

Computer
Name

Update
Title
Description
Reason

Applied on

Mark

ID

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 40

RAMark Details

• Type Signature
RAMark:<type>(a1, a2,…an)

• Constraints
– a1,a2,…an (n>0) are distinct attributes of a

superimposed entity

• Semantics
– All attributes specified are associated with one

mark (or a bag of marks)

– Associating an attribute with a mark does not
mean its value is obtained using the mark

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 41

RAMarks Details

• Type Signature
RAMarks:<type>(A1, A2,…An)

• Constraints
– A1,A2,…An (n>0) are non-empty, disjoint sub-sets

of the attributes of a superimposed entity

– Attribute sets may be indicated using braces or
parentheses

• Semantics
– Each set of attributes is associated with one mark

(or a bag of marks)

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 42

Revised Conceptual Schema*

* EMark, AMarks, VAMarks, and RAMark relationships are many-1; other relationships are many-many

Observation
Date
Time
Text
User

Module
Name

Computer
NameRelates to

Event
Date
Time
Kind
Source
Description

Relates to

Logged on

Mark
ID

EMark:EventDetail

Update
Title
Description
Reason

Applied on

Application
Name

Applies to

Uses

Runs on
Error

Date
Time
Source
Description
Notes

Involves

Occurs on

Applies to

AMarks:Error((Date,
Time), (Description))

Mark
ID

VAMarks:UpdateDetail((Title),
(Description), (Reason))

RMark:Application

Date
Time

RAMark:UpdateLog(Date, Time) Mark
ID

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 43

Conversion to Relational Model

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 44

Converting the Mark Entity

• The Mark entity type is represented as a table
with attributes such as
– ID: Integer (key)

– CreatedOn: Date

– CreatedBy: String

– CreateAt: String

• The attributes are derived from the SPARCE
mark descriptor

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 45

Converting EMark Relationship Types

• Convert the relationship type and the
superimposed entity type using the traditional
procedure*

• Derive the name for the foreign-key attribute
that references Mark.ID from the name of the
relationship type.
– E.g., EMark_EventDetail

*Elmasri, Navathe. Fundamentals of Database Systems, 4th Ed.

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 46

Example EMark Conversion

CREATE TABLE Event
(ID Integer NOT NULL PRIMARY KEY,

EDate Date, ETime Time,
Kind CHAR(5),
Source VARCHAR(25),
Description VARCHAR(255),
EMark_EventDetail Integer NOT NULL

REFERENCES Mark(ID)
)

*Added ID attribute (for all relations). Altered names of attributes Date and Time

1Computer
Name

Event
Date
Time
Kind
Source
Description

Logged on Mark
ID

EMark:EventDetail

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 47

Converting AMark(s) Relationship Types

• AMark: Convert the relationship type and
superimposed entity type using the traditional
procedure

• AMarks: For each set of attributes in the
parameters
– Follow the procedure to convert AMark

relationship types

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 48

Example AMarks Conversion

CREATE TABLE Error
(ID Integer NOT NULL PRIMARY KEY,

EDate Date, ETime Time,
AMark_Error_DT Integer NOT NULL

REFERENCES Mark(ID),
Source VARCHAR(25),
Description VARCHAR(255),
AMark_Error_Desc Integer NOT NULL

REFERENCES Mark(ID),
Notes VARCHAR(255)

)
1Computer

Name
Mark

ID

Error
Date
Time
Source
Description
Notes

Occurs on
AMarks:Error({Date, Time}, {Description})

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 49

Converting VAMark Relationship Types*

• Follow the procedure to convert AMark
relationship type

• Replace each attribute associated with a
mark, with an integer attribute
– The replacement attribute stores the ID of the

context element that supplies the original
attribute’s value

– Alternative: remove the attribute, specify the
context element ID in view definition (if value is
always derived from the same context element)

• Define a view

*The procedure might not preserve key constraints if a key attribute is associated with a mark

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 50

Defining a View

• The schema of the view matches the entity’s

• For each attribute associated with a mark,
embed call to the function context
– The attribute that represents the associated mark

supplies the mark ID

– The attribute that represents the associated
context element supplies the context element ID*

• We assume the view inserts a NULL value in
case of a type mismatch (possible if function
context returns an incompatible type)

*Alternatively, context element IDs can also be directly specified in the view definition

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 51

Converting VAMarks Relationship Types

• For each set of attributes in the parameters
– Follow the procedure to convert VAMark

relationship types

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 52

Example VAMarks Conversion

CREATE TABLE Stored_Update
(ID Integer NOT NULL PRIMARY KEY,

VAMark_TitleCElm Integer,
VAMark_Title Integer NOT NULL

REFERENCES Mark(ID),
VAMark_DescCElm Integer,
VAMark_Desc Integer NOT NULL

REFERENCES Mark(ID),
VAMark_ReasonCElm Integer,
VAMark_Reason Integer NOT NULL

REFERENCES Mark(ID)
)

1

Mark

ID

Update
Title
Description
Reason

VAMarks:UpdateDetail((Title),
(Description), (Reason))

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 53

Example View Definition

CREATE VIEW Update (ID, Title,
Description, Reason) AS

SELECT
ID,
context(VAMark_Title, VAMark_TitleCElm),
context(VAMark_Desc, VAMark_DescCElm),
context(VAMark_Reason, VAMark_ReasonCElm)
FROM Stored_Update

• context is a user-defined function

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 54

Example Alternative VAMarks Conversion

CREATE TABLE Stored_Update
(ID Integer NOT NULL PRIMARY KEY,
VAMark_Title Integer NOT NULL

REFERENCES Mark(ID),
VAMark_Desc Integer NOT NULL

REFERENCES Mark(ID),
VAMark_Reason Integer NOT NULL

REFERENCES Mark(ID)
)

1

Mark

ID

Update
Title
Description
Reason

VAMarks:UpdateDetail((Title),
(Description), (Reason))

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 55

Example Alternative View Definition

CREATE VIEW Update (ID, Title,
Description, Reason) AS

SELECT
ID,
context(VAMark_Title, e1),
context(VAMark_Desc, e2),
context(VAMark_Reason, e3)
FROM Stored_Update

• e1, e2, e3 are IDs of context elements

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 56

Converting RMark Relationship Types
(1)*

• Convert the original relationship type and the
related entity types using an appropriate
procedure (the original relationship might not
be traditional)

• To the table that captures the original
relationship type
– Add a foreign key attribute that references Mark.ID

– Add attributes of the RMark relationship type

*Cardinality of the RMark relationship type is 1; cardinality of the original relationship type is immaterial

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 57

Converting RMark Relationship Types
(Many)*

• Convert the original relationship type and the
related entity types using an appropriate
procedure

• Create a new table (derive name from the
RMark relationship type). To the new table:
– Add the key of the table that captures the original

relationship type, and make it a foreign key

– Add a foreign key attribute that references Mark.ID

– Define primary key as set of foreign key attributes

– Add attributes of the RMark relationship type

*Cardinality of the RMark relationship type is many

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 58

CREATE TABLE Stored_Update*

(ID Integer…, PRIMARY KEY ID)
CREATE TABLE Application
(ID Integer…, PRIMARY KEY ID)
CREATE TABLE AppliesTo
(UID Integer…, AID Integer…, PRIMARY KEY
(UID, AID))

CREATE TABLE RMark_Application
(UID Integer…, AID Integer…,

RMarkID Integer
REFERENCES Mark(ID),

PRIMARY KEY (UID, AID, RMarkID))

Example RMark (Many) Conversion

RMark:Application

Application
Name

Update
Title
Description
Reason

Applies to

Mark

ID

* In the running example, Update information is stored in table Stored_Update

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 59

Converting RAMark Relationship Types
(1)*

• Convert the original relationship type and the
related entity types using an appropriate
procedure

• To the table that captures the original
relationship type
– Add a foreign key attribute that references Mark.ID

– Add attributes of the RAMark relationship type

*Cardinality of the RAMark relationship type is 1

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 60

Converting RAMark Relationship Types
(Many)*

• Convert the original relationship type and the
related entity types using an appropriate
procedure

• Create a new table (derive name from the
RAMark relationship type). To the new table:
– Add the key of the table that captures the original

relationship type, and make it a foreign key

– Add a foreign key attribute that references Mark.ID

– Define primary key as set of foreign key attributes

– Add attributes of the RAMark relationship type

*Cardinality of the RAMark relationship type is many

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 61

CREATE TABLE Stored_Update
(ID Integer…, PRIMARY KEY ID)
CREATE TABLE Computer
(ID Integer…, PRIMARY KEY ID)
CREATE TABLE AppliedOn
(UID Integer…, AID Integer…,

EDate As Date, ETime As Time,
RAMark_UpdateLog Integer

REFERENCES Mark(ID),
PRIMARY KEY (UID, AID))

Example RAMark (1) Conversion

Date
Time

RAMark:UpdateLog(Date,
Time) 1

Computer
Name

Update
Title
Description
Reason

Applied on

Mark

ID

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 62

Using Views

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 63

When to use Views

• If an attribute always gets its value from the
context of a mark

• When live base data is needed

• The VAMark and VAMarks typespaces
automatically generate view definitions
– We describe the use of views for “black belts”

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 64

Creating View Definitions

• Create a stored relation containing only the
foreign key attributes that reference Mark.ID,
and the attributes whose values are not
derived from context of marks
– Alternatively, replace an attribute that derives

value from a mark’s context with an integer
attribute that stores the context element ID

• Create a view over the stored relation with
embedded calls to the function context (a
user-defined SQL function) to compute values
of attributes omitted from the stored relation

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 65

Example Stored Relation: Event

CREATE TABLE Stored_Event
(ID Integer NOT NULL PRIMARY KEY,
Kind CHAR(5),
EMark_EventDetail Integer NOT NULL

REFERENCES Mark(ID)
)

*Application knowledge tells us that all but the ID and Kind attributes get their values from a mark’s context

1Computer
Name

Event
Date
Time
Kind
Source
Description

Logged on Mark
ID

EMark:EventDetail

Attributes EDate,
ETime, Source,
and Description
are removed*

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 66

Example View Definition: Event*

CREATE VIEW Event (ID, Date, Time, Kind,
Source, Description) AS

SELECT
ID,
context(EMark_EventDetail, e1),
context(EMark_EventDetail, e2),
Kind,
context(EMark_EventDetail, e3),
context(EMark_EventDetail, e4)

FROM Stored_Event

*e1, e2, e3, e4 are IDs of context elements

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 67

Example Stored Relation: Error

CREATE TABLE Stored_Error
(ID Integer NOT NULL PRIMARY KEY,

Source VARCHAR(25),
Notes VARCHAR(255),
AMark_Error_DT Integer NOT NULL

REFERENCES Mark(ID),
AMark_Error_Desc Integer NOT NULL

REFERENCES Mark(ID)
)

1Computer
Name

Mark
ID

Error
Date
Time
Source
Description
Notes

Occurs on
AMarks:Error({Date, Time}, {Description})

Attributes EDate,
ETime, and
Description are
removed

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 68

Example View Definition: Error*

CREATE VIEW Error (ID, Date, Time,
Source, Description, Notes) AS

SELECT
ID,
context(AMark_Error_DT, e1),
context(AMark_Error_DT, e2),
Source,
context(AMark_Error_Desc, e3),
Notes

FROM Stored_Error

*e1, e2, e3 are IDs of context elements

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 69

Querying

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 70

Bi-level Queries

• Bi-level queries can be written against the
logical schema

• A query can freely use the function context
with a mark ID and a context element ID
– This function returns live data from the base layer

(under normal circumstances)

– Can assign the result of this function to an attribute

– Can use function excerpt to retrieve text excerpt

• View definitions provide the best abstraction

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 71

Example Queries 1, 2

• Retrieve all update details
SELECT * FROM Update

• Retrieve updates related to security
SELECT * FROM Update
WHERE Description LIKE 'Security%'

• Because Update is a view, values of
attributes associated with mark are retrieved
from the base layer when the view definition
is executed

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 72

Example Query 3

• Retrieve all errors MS Word caused in the
last week
SELECT * FROM Error
WHERE EDate BETWEEN CURRENT_DATE AND
CURRENT_DATE - INTERVAL '6' DAY

AND Description LIKE '%Word.exe%'

• If Error is a view, the attributes date, time
and description are retrieved from the base
layer when the view definition is executed

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 73

Example Query 4

• Create a timeline of errors related to MS
Word and MS Outlook

SELECT EDate, ETime, Description
FROM Error
WHERE Description LIKE '%word.exe%'
OR Description LIKE '%Outlook.exe%'

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 74

Sample Results 4

EDate ETime Description
1/26/2004 19:46 Hanging app…Outlook.EXE…
1/27/2004 20:04 Faulting app…winword.exe…
3/9/2004 16:38 Hanging app…winword.EXE
4/13/2004 10:11 Faulting app…Outlook.EXE…
4/23/2004 13:04 Hanging app…Outlook.EXE…
5/21/2004 9:39 Faulting app…winword.exe…
5/26/2004 14:05 Faulting app…winword.exe…

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 75

Timeline 4*

*Drawn using an XML transformation based on work of Nicolas Kruchten. Timeline is non-linear

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 76

Example Query 5

• Create a timeline of errors, along with
the faulting application and module

SELECT EDate, ETime,
SUBSTRING(Description SIMILAR
'\"%\" application \"%\", \"%\"’
ESCAPE '\'),
SUBSTRING(Description SIMILAR
'\"%\" module \"%\", \"%\"’ ESCAPE
'\')

FROM Error

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 77

Sample Results 5

EDate ETime #1 #2
1/26/2004 19:46 Outlook.EXE hungapp
1/27/2004 20:04 winword.exe usp10.dll
3/9/2004 16:38 winword.EXE WINWORD.EXE
4/13/2004 10:11 Outlook.EXE ntdll.dll
4/23/2004 13:04 Outlook.EXE hungapp
5/21/2004 9:39 winword.exe winword.exe
5/26/2004 14:05 winword.exe mso.dll

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 78

Timeline 5

Application and
module
information
retrieved from
context

Date and time
information
retrieved from
context

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 79

Example Query 6

• What events related to Outlook are recorded
after SP2 update was applied?

SELECT
E.EDate, E.Time, E.Description

FROM Event E, Update U JOIN AppliedOn A
On U.ID=A.UID

WHERE U.Description LIKE '%SP 2%'
AND E.EDate > A.EDate
AND E.Description LIKE '%Outlook.exe%'

SP 2 Update

Events after SP 2 is applied

Outlook events

Updates applied

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 80

Summary

• Associating marks with entities, attributes,
and relationships is a recurring need. That is,
there are patterns involving use of marks

• We have identified key aspects for patterns of
using marks: contexts, constraints, syntax,
semantics, and consequences

• We have shown how to generate relational
schema from a conceptual schema

• We have demonstrated some bi-level queries

26-Oct-05 Using Relationship Patterns to Model Superimposed Information 81

References

• Bowers, Delcambre, Maier. Superimposed Schematics:
Introducing E-R Structure for In-Situ Information Selections (ER
2002).

• Chen. The Entity-Relationship Model - Towards a unified view of
data . ACM TODS Vol. 1 (1), 1976.

• Elmasri, Navathe. Fundamentals of Database Systems, 4th
Edition.

• Melton, Simon. SQL: 1999: Understanding Relational Language
Components.

• Murthy, Maier. A Framework for Relationship Pattern Languages

• Ramakrishnan and Gehrke. Database Management Systems,
3rd Edition.

