
Emergent Semantics: Towards Self-Organizing
Scientific Metadata

Bill Howe, Kuldeep Tanna, Paul Turner, and David Maier

OGI School of Science & Engineering at
Oregon Health & Science University

Beaverton, Oregon
(bill,kuldeep,maier)@cse.ogi.edu, pturner@ccalmr.ogi.edu

Abstract. Tasked with designing a metadata management system for
a large scientific data repository, we find that the customary database
application development procedure exhibits several disadvantages in this
environment. Data cannot be accessed until the system is fully designed
and implemented, specialized data modeling skills are required to design
an appropriate schema, and once designed, such schemas are intolerant
of change. We minimize setup and maintenance costs by automating the
database design, data load, and data transformation tasks. Data creators
are responsible only for extracting data from heterogeneous sources ac-
cording to a simple RDF-based data model. The system then loads the
data into a generic RDBMS schema. Additional grouping structures to
support query formulation and processing are discovered by the system
or defined by the users via a web interface. Discovered and imposed
structures constitute emergent semantics for otherwise disorganized in-
formation.

1 Introduction

When a group of environmental scientists requested our help designing a meta-
data management solution for their scientific data repository, we speculated that
the database community’s flagship technology, relational database management
systems, would solve the problem neatly. We changed our assessment after fur-
ther investigation, judging that the high cost of database deployment and main-
tenance made the likelihood of adoption rather low. As an alternative, we present
a metadata collection, organization, and query architecture that lowers the cost
of entry by reordering steps in the database design methodology. Metadata is
gathered and loaded immediately using a simple RDF-based data model. After
the data is loaded, they are partitioned according to their signature, which is
inferred by the system. Additional grouping structures (views) can be defined by
users through a web interface. Organizing data via signatures results in a form of
schema that facilitates query expression and allows efficient query evaluation. By
performing schema design semi-automatically only after the data is loaded, we
sidestep the primary obstacles to database adoption in a scientific environment.
Additionally, the schema structures we discover can be adapted to changes in
the metadata stream, avoiding schema evolution problem.

The context for our work is the CORIE Environmental Observation and
Forecasting System, designed to support study of the physical processes of the
Columbia River estuary. The CORIE system both measures and simulates the
physical properties of the estuary, generating 5GB of data and over 20,000 data
products and subproducts daily, including visualizations, aggregated results and
derived datasets. The data products are consumed for many purposes, including
salmon habitability studies and environmental impact assessments. The number
of files in the repository is around 6 million and growing by tens of thousands a
day. The existing repository is organized as a collection of directory structures
on a Linux filesystem. Descriptions for these files are found encoded in the file
name, in the content of the file itself, or in accompanying files.

For example, the data products generated from the simulation outputs have
descriptive information encoded within their filenames. Figure 1 shows an ex-
ample of descriptions found in and around the target file.

���������
	��
����������������

��� �"!�#%$'&'(*),+.-,/1032541687:9';"<>= ?A@"B8CEDGFIHKJML.NPO3Q

RES.T�UWVYX8Z\[^]`_ a>bdcPePfhgjiPkElm%n5oEprq�sutwvrx

y zd{ |~}����d�u�I�M�
�������������*�>�������u���
�
�

���j�\� �W¡£¢¥¤*¦*§h¨.©«ª ¬�¯®h°\± ²�³
´Pµh¶�·¹¸Mº¼»d½P¾W¿¯ÀÂÁÄÃdÅhÆ8Ç�ÈÄÉ*ÊÌËWÍÏÎÑÐ.Ò�Ó�Ô
ÕPÖ¥×�Ø ÙdÚWÛ

Ü¯Ý Þàß8á âàãKä�å\ædçéèëê

ìîí8ï*ð.ñóò¥ôÂõ�öP÷Pø5ùEúÄû¯ü ý\þhÿ��������	��
���
������������������ 	!#"%$'&�()�*,+�-�.0/21436587
9;:<�=

>0?�@�A�BDCFE,G;H;I;J�KMLON�P4Q

Fig. 1. Metadata encoded in file names, headers, paths, “nearby” files.

The data repository is exhibiting growth in both the number and types of
files stored. We have encountered at least the following kinds of files:

– Observation data downloaded from field sensors.
– Simulation inputs downloaded from external servers, in varying stages of

pre-processing.
– Simulation parameter files.
– Simulation control information such as logs, status flags, and saved check-

points.
– Raw simulation outputs in multiple formats.
– Derived data products including reduced datasets, images, visualizations,

reports, and aggregations of multiple datasets.

Additionally, there is a growing need for access to these data by people other
than the data creators; the heterogeneity of the sources of metadata across these
file types is an impediment.

To support general data access for non-expert users through these scattered
metadata, we describe two alternatives. Our initial plan was to build a straight-
forward database application. However, there was a possibility that such a sys-
tem would be difficult to deploy and maintain without considerable ongoing help
from us. After further thought, we aimed higher: a system for automatically and
adaptively organizing metadata.

1.1 The “Obvious” Solution

Our first thought was to define a schema to house the metadata in an RDBMS.
Next, data creators populate the schema by inserting a tuple for every file in the
repository. Then, a database application is constructed and tested for searching
the database.

There are several disadvantages to this approach. The data creators are not
necessarily data modelers; schema design requires somewhat specialized skills.
Even proficient data modelers would have trouble: The schema should be tuned
to declared use cases, but since new users are coming online continuously, not all
use cases are known at design time. We could undertake the modeling ourselves,
but the effort would still require a lot of interaction with the scientists, who do
not have much time to spare.

Data loading is also problematic; we cannot ask the scientists to manually
enter 6 million tuples. Portions of the data-loading task can be automated since
the data creators are often proficient programmers, but their knowledge does
not necessarily include RDBMS languages or APIs. Data loading constitutes a
significant up-front cost to this approach which must be paid before any benefit is
realized, so it is difficult to persuade the scientists to diligently record metadata
during the interim. Accurate test data with which to proof the system is also
needed but has an even lower priority.

Once the data is loaded, the schema may be difficult to validate since the
database is free to diverge from what is encoded in the filenames, file content, etc.
Database APIs and a specialized schema constitute a “wide” interface between
data creators and metadata managers: Small requirements changes can result
in significant interface changes. A question of responsibility also arises: if a new
metadata field is required, who must update the database and possibly modify
or reload data?

1.2 An Alternative

Since the metadata sources may change frequently, those responsible for the
changes must also be responsible for their extraction. However, aside from ex-
traction, all other tasks should be automated and adaptive to change.

In our approach, data creators are only responsible for “descriptor extrac-
tion” using a very simple data model based on RDF. Descriptors are extracted

using collection scripts written by the data creators in their choice of program-
ming language. These descriptors are loaded as-is into a generic RDBMS schema.
Generic schemas are difficult to query and browse, and exhibit poor performance.
We therefore partition the data into groups according to patterns found in the
metadata. These groups act as a schema to expose structure, simplify query ex-
pression, enable browsing, and improve response time. Additional groupings of
data can be defined by users through a web interface providing a personalized
view of the repository.

This approach offers several advantages. A narrower interface between meta-
data managers and data creators is required: To accommodate changing meta-
data requirements, simply update the collection scripts and the system reacts
appropriately. Metadata can be harvested prior to finalizing a schema making
benefits more immediate. A single, generic metadata delivery interface, con-
trolled by collection scripts can both load new data and update existing data.
Since the schema is built dynamically, new views can be easily defined to support
new users or new tasks. We use the term emergent semantics to describe the
paradigm of harvesting data first and organizing it second. By organizing and
publishing the gathered metadata back to users, they retain responsibility and
control over validation and adjustments. The collection scripts used to gather
metadata can be modified and re-executed to update the database.

Several challenges must be overcome to realize these benefits. Queries over
a generic RDF schema are expensive and difficult to express. Techniques for
identifying patterns in the metadata stream must be devised. Once patterns in
the metadata are found, we must convert them into structures (signatures and
signature extetnts) to facilitate query expression and processing. Users may also
wish to impose their own structure on the data. As new users and new use cases
are introduced, requirements may change. If the metadata stream changes, can
the previously found structures adapt? In some cases, users may wish to pro-
mote previously found structures into hard constraints, rejecting non-conforming
metadata. This paper presents an architecture that takes initial steps towards
resolving these issues.

2 Harvesting Metadata

To extract metadata from scattered sources, we rely on collection scripts to assign
〈property, value〉 pairs to each file. The output of collection scripts are then
interpreted as 〈subject, property, object〉 triples. In our application, collection
scripts are written primarily, but not exclusively, by the environmental scientists.
They are proficient programmers and are most familiar with the file description
encoding schemes at the sources.

Collection scripts may be written in any language. To fire the collection
scripts and harvest the metadata we provide a program harvest. The harvest
program accepts a set of applicability rules and a target directory as input,
and produces 〈file, property, value〉 triples for each file in the directory. An
applicability rule consists of a regular expression, the path to a collection script,

and a path to an interpreter for the collection script, if necessary. The harvest
program recursively walks the target directory, testing the rules for each file. A
rule is activated if its regular expression accepts the string formed by the path
and file name being tested. For each activated rule, the program executes the
appropriate collection script. Multiple rules may fire for the same file, and the
same collection script might be triggered by multiple rules.

For the file in Figure 1, a simple rule matching the “.63” extension trig-
gers a collection script that emits triples from the file name (e.g., <1 salt.63,
variable, salinity>), from the content (e.g., <1 salt.63, nodes, 55817>),
and from nearby files (<1 salt.63, implicitness, 0.8>). Alternatively, these
three sources could have been accessed by three separate collection scripts (re-
quiring three rules), all triggered by the same regular expression. Rules give
collection script writers significant flexibility with regard to software design. For
example, these three collection scripts may be written by different authors with
different metadata requirements.

Each script is expected to accept one command line argument, a file path,
and call a function Assert(property, value, type) for each metadata item it
wishes to record for the file. The Assert function is provided by the system for a
few languages (Perl, Python, C). If scripts are written in a language for which the
assert function has not been defined, the script may simply emit the property,
value, and type arguments to standard out in a comma-delimited format.

Initiating a separate process for each script execution is prohibitively expen-
sive, as there are around 20,000 files per run and a large repository of existing
runs. To improve performance, the harvest program uses embedded interpreters
for the two most popular languages, Perl and Python. For simplicity, the users
still write their code as if it is to be run from the command line; the harvest
program wraps each script in a virtual environment and executes it in the same
address space.

The Assert function, called from within a collection script, emits a triple
through temporary files or stdout. The stream of triples produced by a series
of calls made by amultiple collection scripts is then delivered to a relational
database for analysis, as described in Section 4.

3 Modeling Metadata

To interpret extracted metadata, we must choose a data model to capture the
descriptions. Rich data models that can capture complex relationships, con-
straints, and operations allow the same real world concept to be modeled in
many different ways. To choose an appropriate translation into the data model’s
structures, modeling experts meet with domain experts, clarify the details, and
construct a prototype. This offline coordination is expensive in terms of time re-
quired, and usually involves several iterations. Other confounding issues impede
the data modeling efforts: dirty data, redundancy, ambiguity. Finally, if changes
are expected to be frequent, this design process might be repeated several times.

We sidestep these issues at this stage by adopting a very simple data model.
Very little transformation need be performed and very few initial modeling de-
cisions need be made to get the metadata recorded and queryable. Once the
descriptions are in a uniform, machine-readable format, richer modeling features
can be applied. Figure 2 contrasts the manual effort required by the two ap-
proaches.

To accommodate the heterogeneity of the data sources and simplify the scien-
tists’ collection scripts, we adopt a data model based on the Resource Description
Framework (RDF) [7] consisting of 〈subject, property, object〉 triples. We sacri-
fice expressive power for simplicity and uniformity: Simple facts can be recorded
without regard to overall structure.

Of course, the additional expressive power of richer data models is important
for query formulation and processing. To recover these benefits, we must derive
relationships encoded in the 〈subject, property, object〉 triples. For example, if
several files all have the same set of properties, we can group the files together
to simplify queries and improve their performance.

Scattered Descriptions Queryable Metadata

User Interviews
Schema Design

Data Load
Prototype

Test

Write Collection Scripts

Fig. 2. Two methods of organizing data with different amounts of offline activity.

3.1 RDF: Shortest Route to Machine-Processable Metadata

We have been using the RDF terminology of “subject,” “property,” and “object.”
The word “object” connotes a fundamental feature of the RDF data model:
Properties can reference arbitrary resources, making the overall data model a
graph. This feature distinguishes RDF from tree-based data models, e.g., LDAP
[15].

RDF was designed to enable interoperability and automation by adorning
web resources with simple machine-processable metadata. Our domain is sim-
ilar: We adorn files, the substrate of observation and simulation systems, with
metadata to enable access.

Formally, an RDF graph is a set of triples of the form (s, p, o). The property
(or predicate) p is drawn from a set of Uniform Resource Identifiers R. The
subject s is drawn from the union of R and a set of blank nodes B. The object

o is drawn from the union of R, B, and a set of literals L. Blank nodes act as
existentially quantified variables over the domain of a particular graph. RDF
graphs can be drawn as a graph using the union of R, B, and L as nodes and
drawing an edge for every triple. Edges are labeled with the property URI, and
non-blank nodes are labeled with either the URI or the string literal in quotes.
Blank nodes are, as might be expected, unlabeled.

We forego the use of more advanced features of RDF, such as RDF Schema for
defining classes and class membership, and reification for asserting RDF state-
ments about other RDF statements. Use of these features would again require
the up-front modeling effort we hope to avoid. We do allow literals to carry a
type as supported in RDF. Note that our interest is in the RDF model rather
than the XML-based syntax for RDF [14].

Even without the advanced features, the RDF data model can be used to cap-
ture the information expressed in much richer data models, though redundancy
is often introduced, and query facilities are sacrificed.

3.2 Interpreting RDF in our Application

To model our metadata in RDF, we must first specify the sets R, B, and L. Each
file for which metadata is collected is given a URI derived directly from the file’s
path. Additionally, each unique property emitted is assigned a URI of the form
property:<propertyname>. Our “objects” may be string literals or file URIs.
Figure 3 shows an example of an RDF graph used to model our domain.

//2003-49-01/sal_estuary_7.gif

2003-49-01

7

“salinity”

depth

region

variable

run_id

./1_salt.63

source_data

variable

59600

nodes

name
“estuary”

-123.1

45.9

ymin

xmin

46.5

-124.5ymax

xmax

Fig. 3. An example of RDF used to model files and properties in our domain.

The RDF data model allows a URI to appear as both a property and an
object in two triples x and y. In our application, however, property URIs may
not appear as objects, though file URIs may. Files that reference other files
are especially useful for tracking provenance; data products can reference the

datasets they are derived from, and datasets can reference the executable of the
simulation code used to generate it as well as the inputs.

The graph structure of RDF is one prominent feature RDF; the other is the
concept of blank nodes. Blank nodes are used to model anonymous structured
types. In Figure 3, we use a blank node (the gray oval) to capture the idea that
the region named “estuary” corresponds to the bounding coordinates xmin =
45.9, ymin = -123.1, xmax = 46.5, ymax = -124.5.

Collection scripts are not capable of emitting blank nodes directly. To re-
tain simplicity, elements of structured property values are attached to the files
directly. The metadata stream can be seen as “denormalized” in the sense of
relational database design. We sacrifice such advanced modeling features at this
stage, favoring instead simple collection scripts. In Section 4.4, we describe how
these structured types can be correctly abstracted.

4 Analyzing RDF using RDBMS

We have modeled our domain of files and metadata using RDF. Our use of
RDBMS technology to store and manipulate RDF data is the subject of this
section. As reported in the literature, RDBMS are an appropriate choice for
managing RDF data. However, since we have no schema information at this
stage, we adopt a generic RDF schema that captures the RDF triples directly.
This approach has been called the vertical representation [4], generic schema, or
edge schema [11] in the literature for various data models and applications. We
discuss querying the data in terms of SQL: Query languages for RDF have been
proposed [23, 16], but either tend to rely on schema information encoded with
RDF Schema [8], or have not demonstrated scalability.

Two variants of the generic RDF schema appear in Figure 4a. A Triples
table stores RDF triples in terms of string representations of the URIs. To im-
prove performance, a Resources table might abstract the string representations
of uris and leave integer keys in the Triples table for faster processing of set
operations on resources (Figure 4b).

4.1 Performance

The use of a single table for storing the RDF graph faithfully supports the RDF
specification, but makes queries over RDF difficult to write. For example, to
retrieve all the files (subjects) which exhibit the properties variable, region,
and plottype, 2 self-joins (in standard SQL) are required. Figure 5 shows the
SQL for such a query over the schema of Figure 4a. To ask for files that exhibit an
n-attribute signature, an n−1-way join is required. More generally, each property
to be viewed (projection) or used to filter results (selection) contributes a join on
the Triples table. The SQL is awkward to generate or write, and performance is
terrible with respect to the number of conditions. Our current database captures
30 million RDF triples describing 6 million files, so performance is important.

animationproperty:plottypefile://forecasts/2003-184/images/anim-
sal_estuary_7.gif

estuaryproperty:regionfile://forecasts/2003-184/images/anim-
sal_estuary_7.gif

file://forecasts/2003-
184/run/1_salt.63

property:sourcefile://forecasts/2003-184/images/anim-
sal_estuary_7.gif

saltproperty:variablefile://forecasts/2003-184/images/anim-
sal_estuary_7.gif

objectpropertysubject

95
�

73
�

�
61

84
�

objectpropertysubject

salt8

animation9

property:plottype5

property:source6

estuary7

property:variable4

3

2

1

id

property:region

file://forecasts/2003-184/images/anim-
sal_estuary_7.gif

file://forecasts/2003-184/run/1_salt.63

uri

a)

b)

Triples

Resources Triples

Fig. 4. Two possible schemas for modeling RDF in RDBMS.

SELECT r.subject as file, r.object as region,
p.object as plottype, v.object as variable

FROM statements r, statements p, statements v
WHERE r.subject = p.subject

AND p.subject = v.subject
AND r.property = ‘property:region’
AND p.property = ‘property:plottype’
AND v.property = ‘property:variable’

Fig. 5. SQL to find resources exhibiting properties variable, region, and plot type.

Using a single Triples table, we can express arbitrary RDF graphs. In prac-
tice however, we observe that the files have one of several signatures. For example,
most data products derived from simulation output are associated with a vari-
able (e.g., salinity, velocity, temperature), a region (e.g., estuary, far, plume),
and plot type (isolines, transect, timeseries). Figure 6 shows a transect plot (a)
and an isolines plot (b) for the salinity variable in the estuary region.

a)

b)

Fig. 6. Two data products from the CORIE simulation system.

Each of these plots exhibit the three metadata attributes involved in the
query of Figure 4. If this signature is common, we can improve performance by
materializing the signature extent proactively, reducing the query to “SELECT *
FROM <signature name>”

4.2 Signatures

A signature is the set of properties used to describe a particular file. A signature
extent is a set of files that all exhibit the same signature. Computing the extents
involves finding the unique signatures exhibited in the current database instance
of the Triples table. We materialize these extents as tables in the relational
schema. This approach is only wise if the number of signatures is small relative
to the number of files. Considering that there are intuitively related sets of files
such as data products, simulation outputs, etc., this assumption appears valid.
Note, however, that the number of signatures is not simply equal to the number
of scripts. Multiple scripts, possibly written by different people, can fire for the
same file. Further, nothing constrains a script to output the same properties for
every file. For example, we use collection scripts that output different parameters
depending on which version of the simulation is being considered.

Computing signatures is similar to extracting association rules in a data
mining application. Instead of identifying which item groups tend to be found
together in a single customer order, we find properties that tend to be found

associated with a single file. However, we need not invoke the full power of
data mining, since we are only interested in association rules of 100 percent
confidence; most data mining algorithms use sophisticated techniques to estimate
the confidence level and prune the search space.

Computing the signatures might seem to require application code, but we
can exploit set-valued attributes to express the computation using a GROUP BY
in SQL. We simulate set-valued attributes in Postgres [26] using sorted arrays.
The SQL for this computation is given in Figure 7. The GROUP BY operator uses
an aggregation function (array accum) that constructs an array dynamically
from the elements of the group. If the data are sorted prior to evaluating the
GROUP BY, the arrays may be compared for equality, and therefore duplicate
arrays may be removed.

SELECT DISTINCT array_accum(property) as signature
FROM (

SELECT subject, property
FROM Triples
ORDER BY subject, property

)

Fig. 7. SQL to compute unique signatures.

For each signature, a signature extent can be computed with attributes for
each property in the signature. The materialized view can be computed using
SQL of the form in Figure 5, but a much faster method again uses set-valued
attributes and a crosstab operation. The crosstab operation is known by various
names in the literature. The designers of the SchemaSQL language [18] propose
a fold operator, and Online Analytical Processing (OLAP) systems include a
CUBE operator [12].

The SQL in Figure 7 can be adjusted slightly to generate the profile for every
subject in the triples table (Figure 8a) rather than the set of unique signatures.
We can materialize this adjusted query, calling the materialized table FileSigna-
tures. Now, for each unique signature s, we want to 1) find the set of file URIs
Fs whose signature is s, 2) find the set of triples Ts whose subject is in F , 3)
sort the results by subject and property1, and 4) perform the crosstab operation
to convert the properties into attribute names in the query results. Steps 1-3
are captured by the SQL in Figure 8b. The query result can be materialized
as a signature extent and is available for further querying. This approach is far
more efficient than the SQL in Figure 5, since that approach requires O(n) joins,
where n is the number of attributes in the signature. The crosstab algorithm is
linear with respect to the number of files and the number of triples.

performance results comparing join-based signature materialization vs. crosstab
signature materialization

1 The single-pass crosstab algorithm requires the data be sorted.

SELECT subject,
array_accum(property)
as signature

FROM (
SELECT subject, property
FROM Triples
ORDER BY subject, property

)
GROUP BY subject

SELECT t.subject,
t.property,
t.object

FROM FileSignatures fs,
Triples t

WHERE fs.signature = <s>
AND fs.subject = t.subject

ORDER BY t.subject, t.property

a) b)

Fig. 8. SQL to compute the signature of each subject.

Signatures provide an overview of the data collected with the harvest mech-
anism. Users can check their assumptions about the metadata that is collected
by reviewing the set set of signatures found and which signature a particular
file exhibits. For example, in our domain, users expected that all files containing
parameters to the simulation would have the same signature. All the parameter
files were thought to exhibit the same properties, though with different values.
However, two similar but distinct signatures were found by the system, exposing
the fact that that parameter files created for different versions of the code had
a slightly different format. A new collection script to parse the older parameter
files was created.

4.3 Update Semantics

So far, we have discussed how to efficiently compute signature extents from a
large set of RDF triples, but how are these data to be maintained as the RDF
stream changes? New simulations result in new files being delivered with po-
tentially new signatures. As requirements change, existing collection scripts will
evolve and new collection scripts will be written. New applicability rules may
also be defined, causing existing collection scripts to operate on new files. In
each of these situations, there are three classes of changes that must b accom-
modated: new files with potentially new signatures, new properties for existing
files resulting in a change of signature, or new values for existing properties of
existing files. How the system reacts to these possibilities is the subject of this
section.

New Files When new files are presented to the system, they may or may
not exhibit a previously encountered signature. If they do, then a new tuple
may be inserted into the appropriate signature extent, and no schema changes
are required. If the signature has not been previously encountered, then a new
signature extent can be created and a the new tuple inserted into it.

New Properties, Existing Files If a collection script is modified and then re-
executed over existing data, two possibilities must be addressed. First, the newly

modified collection script may emit different values for an existing property of an
existing file. We describe this case in the sequel. Second, a collection script may
emit an entirely new property for an existing file, changing the file’s signature.
Since we have previously computed signature extents and materialized them, we
must massage the database to accommodate this new signature.

One choice is to simply drop and reload the database whenever the collection
scripts are modified or another change is made, but an incremental strategy is
desirable. If the file’s new signature has been previously encountered, then an
extent exists for it, and the tuple can be deleted from the old signature extent and
inserted into the new one. If the signature has not been previously encountered,
then a new signature extent must be created first.

New Values, Existing Properties, Existing Files To support update of
property values, we must modify our interpretation of RDF. The RDF data
model allows a single property to be asserted more than once for a particular
subject. Instead, we enforce that no two triples in a given database instance may
have the same subject and property. To accommodate updates to a property’s
value, we interpret the assertion of a property as a command to overwrite the
previous value, if one exists. This interpretation implies that there is a total
order on the RDF triples, corresponding to their arrival in the system.

To define the total order, we must consider executions of the harvest program,
executions of collection scripts, and the order of assertions within a collection
script. Executions of the harvest program can be serialized naturally by the
server. However, within a single execution of the harvest program, multiple col-
lection scripts may attempt to assert the same property for the same file. To
resolve this ambiguity, we defer to the order of the applicability rules. Recall
that these rules specify which collection scripts to fire for which files. The latest
rule that causes a duplicate assertion to be made overrides any previous rules.
The applicability rules are managed by the data creators just as the collection
scripts are, so changes can be made unilaterally. There is also the possibility that
a single collection script may assert the same property for the same file twice
in a single execution. We rely on the script author to understand that only the
later value will be retained.

To minimize redundant work, we keep track of which collection scripts were
executed with which execution of the harvest program. If the harvest program is
re-executed over existing files, we only fire those collection scripts that are new
or have been modified since the last execution. This policy reduces the amount
of time required to harvest metadata and reduces the conflicts that must be
resolved during loading.

Batches The semantics we have just described can result in a great deal of data
reorganization work. Very small changes to a collection script can result in many
insertions, updates, and deletions, and potentially require new database tables to
be created. There is a tradeoff between processing new metadata incrementally
and buffering batches of metadata to process all at once.

If we enact the policies above after every triple arrives, we will obtain the
correct semantics, but we will fire multiple SQL statements for every triple. The
volume of data is large enough that his approach is unacceptable. Fortunately,
triples generally arrive in batches, usually corresponding to an execution of the
harvest program. We interpret the triples in a batch as arriving simultaneously,
and only compute the new schemas no more than once per batch. As described,
there may be duplicate properties for one file asserted in a single batch. We
remove these duplicates inside the harvest program, according to the semantics
above, prior to database load. Therefore, even though we consider each batch as
a simultaneous set of updates, no ambiguity can arise.

In our application there is a natural batching strategy. For each run of the
CORIE simulation code, around 20k files and around 100k triples are loaded into
the system. Considering these a batch we can balance the tradeoff between stale
data and computing signatures that are replaced without ever being accessed.

Deletes Deletes are more problematic. If we do not support deletes, there is no
way to remove properties associated with files to support changing requirements,
which prevents the correct signatures from being exhibited. But in order to
support deletes, we must allow authors of collection scripts to specify that a file
should no longer have a given property. (Note that we do not wish to support
deletes of files themselves. The fact that a file once existed is important lineage
information.)

We entertained two possible semantics for deletes: 1) Whenever a batch of
metadata arrives for a file, assume the old metadata is incorrect and drop it
all. These semantics agree with the update semantics already specified; new
triples will still “replace” old triples since the old triples are deleted beforehand.
The problem with these semantics is that collection scripts are prevented from
extending the metadata associated with an existing file. They must produce all
metadata for a file in every batch. Another choice is to 2) allocate a special URI
“value:delete” that is interpreted as a deletion when it appears as the object of a
triple. The problem (other than the inelegance of requiring a specially interpreted
value) is that the collection scripts must produce “delete commands” as well as
standard metadata, complicating their design and implementation. Although the
collection scripts are expected to undergo refinement and change, using them
as an interface to perform “one time only” database mutations is awkward.
Currently, our implementation uses the second semantics.

4.4 Blank Nodes Revisited

Recall that blank nodes represent placeholders for unnamed subjects and objects
in an RDF graph. Semantically, blank nodes are existentially quantified variables.
In our design, collection scripts can not emit make use of blank nodes. The
subject of every RDF triple represents a physical file. Collection scripts have no
way of expressing triples whose subject is a blank node.

The disadvantage of this design is that collection scripts must redundantly
emit the same information for many files. For example, all region information

(xmin, xmax, ymin, ymax, region name) is linked directly to the file rather than
linked to a blank node as in Figure 3. The concept of region is a separate entity
and should be abstracted using a blank node in the RDF graph. In a relational
setting, we note that region name functionally determines xmin, ymin, xmax,
and ymax. Normalization procedures prescribe that we decompose a signature
extent involving these properties by extracting a “region” table.

Since the collection scripts cannot express this feature of the data, we rely on
tools to discover it after the data has been loaded. Several algorithms exist for
discovering these functional dependencies [21]. The results of these algorithms
can be used to further refine the schema. The tradeoff is twofold: First, a more
complex schema may make data exploration more difficult for users unfamiliar
with relational principles. Second, the processing of new RDF tuples becomes
more expensive as the schema becomes more complex. The logic to transform
a batch of RDF triples into a set of tuples becomes complex when considering
updates, deletes, and now decomposed tables. Since some changes to collection
scripts may require a significant amount of data to be corrected or reloaded,
minimizing the complexity of the load operation is important.

For these reasons, we compute functional dependencies and perform pre-
scribed decomposition only offline after a batch of data has been loaded. Fur-
ther, we publish the data in terms of signatures, even though the underlying
schema may be more complex. Modern RDBMS support this form of logical
data independence quite well.

Performance currently is adequate considering the database represents over
6 million files and over 30 million RDF triples. After applying the techniques
discussed in this paper for speeding up execution of collection scripts, identi-
fication of signatures, and population of signatures, we can re-load the entire
repository, including re-harvesting the RDF triples, in a few hours. This level
of performance is necessary, since there is a possibility that the majority of the
database must be effectively reloaded if significant changes to collection scripts
are made at one time.

5 Web Interface

Having imposed some structure on the metadata stream, we publish the data to
the web for validation, exploration, and query. Generally changes to a database
schema require changes to an application since applications reference table names
and column names explicitly. However, an application can be designed generi-
cally by retrieving table names and column names from the catalog rather than
hard-coding them. The HTML to display a table’s information is generated dy-
namically from the catalog. We took this approach, extending source code for
a free generic database interface [24]. The entry point is a list of tables in the
current database.

5.1 Validation Using Signatures

In Postgres, materialized views are not directly supported, and are therefore
implemented using tables. The initial view in the web interface shows the sig-
natures inferred by the system. In addition to a system generated name, the
properties that make up the signature are displayed, giving an overview of how
the files are organized in the database.

The list of signatures computed by the system provides immediate informa-
tion about what sort of data is being captured. For example, users can see that
some signatures are very similar, differing in only one attribute (e.g., <plottype,
region, variable, animation> versus <plottype, region, variable>). This
configuration suggests that the presence of the animation property is acting as
a boolean. If the animation property exists, then the file type is an animated
gif; if not, it is a single frame. The value of the animation property may be
irrelevant. Perhaps a better configuration is for files in both signature extents to
assert a GIFtype property, with either the value animation or single frame.
If this configuration improves understanding, appropriate adjustments to the
collection scripts can be made, and the database schema will adapt.

5.2 Query

The interface also allows users to construct simple queries via the signatures.
Properties encountered in the metadata stream are shown, along with a range
of values. This kind of summary information is important for validation as well
as query formulation. For example, one of the parameters to the simulation,
implicitness, indicates a coefficient controlling the weights of implicit and explicit
methods for solving for each timestep. Those unfamiliar with the application can
see the range of values found in the database before issuing a query. In fact, those
unfamiliar with the term have used these value ranges as clues to its meaning.

Figure 9 illustrates the query interface. To construct a query, users select
signatures from the left, which populates a list of properties on the right. Unde-
sired properties from the signature can be removed by double clicking on them.
If a single extent is selected, then these properties simply form the select clause
of a SQL statement. Selection conditions can be added at the bottom of the
screen. The query can also be saved as a materialized view, which is refreshed
at system-configurable intervals.

After retrieving the results of queries, the user can view the file (useful for
images) or make annotate the file. Figure 10 shows the results of a query, and
demonstrates how the user can click a link access the file itself.

If multiple signatures are selected, the natural join between the two is com-
puted. Allowing only the natural join limits the expressiveness of this query
interface, but has suited our purposes for the application thus far. Defining the
precise query features necessary in this domain is an open problem.

The query interface allows us to make efficient use of the scientists’ time. We
can meet with them for an hour, browse through signature extents, and construct
views on the fly. In several of these meetings, we have discovered anomalies in the

Fig. 9. To express queries and saved views, users select signatures on the left and add
selection conditions at the bottom.

Fig. 10. Query results allow access to the file itself.

metadata that reflected real anomalies in the source data. We receive comments
such as the following:

– “Why are there only 3 salinity data products for this simulation run? I was
expecting 4 thousand!”

– “Why are there two copies of the parameter file for every simulation run?”
– “The date should be divided into month and year; we should change that in

the collection scripts.”

6 Related Work

Our base representation of RDF triples is directly related to the work of Agrawal
et al. in managing E-commerce data [4]. Their system also copes with frequently
changing attributes by adopting a vertical representation of data that is isomor-
phic to our base representation of RDF triples. The authors observe that such
a representation makes queries difficult to express, as we have also argued. A
horizontal view is constructed over the vertical representation of the data to ease
this difficulty. The authors’ notion of horizontal representation is very different
from our signature extents, however. The horizontal representation is a single
table that exhibits all attributes exhibited by any item in the database, acting as
an implementation of the Universal Relation [20]. Null values are used to fill the
table where an attribute has not been defined for an item. The resulting table
has thousands of attributes, and many of the tuples are very sparse. Our extents
actually partition the data among many “horizontal” tables, each having only
a handful of columns and significantly fewer tuples. Using extent tables, we can
achieve interactive query performance with at least an order of magnitude more
data than Agrawal et al.

RDF databases are gaining popularity in both research and commercial con-
texts [9, 17, 16]. These systems organize the data according to RDF Schema
information provided along with the RDF data. Contrast this situation with
our domain, where the schema information is not recorded explicitly and is fre-
quently changing. Systems that allow querying of unstructured RDF [23] operate
via graph matching and have not yet demonstrated scalability. Further, the users
are required to “fish” for query results, since no schema structures are present
to guide query formulation. Guha has done some early work on a scalable native
RDF database that does not rely on RDF Schema, but thus far results are not
provided [13].

More recent work by the same group advocates views over RDF databases
constructed as virtual RDF classes [19]. However, users are charged with building
the views using a specialized language. We are taking steps towards deriving
appropriate views given only the base RDF data.

Relational representations of XML data are also of interest. Some depend
on Schema information, which we do not have. Earlier work compares generic
representations of XML. The edge schema captures parent-child relationships
between nodes in the XML tree, and is very similar to the common represen-
tation of RDF triples we have adopted. Binary representations involve separate

tables for each element label, with results constructed via joins. Several groups
have shown these representations to perform poorly in all but highly specialized
domains.

Metadata standards such as Dublin Core [2] and those produced by the
Federal Geographic Data Committee (FGDC) [3] provide pre-defined schemas
for metadata. These standards are usually intended to be human-readable, and
are not usually amenable to structured querying. Further, the standards are
often intended for large granularity datasets rather than individual files. For
example, in our domain, an entire year’s worth of simulations may be described
by a single FGDC document.

However, the use of metadata standards is inconsistent with specified in-
tents; fields are left blank, misinterpreted, or overloaded with additional mean-
ing. These incompatibilites belie the challenge in defining a general metadata
schema for a wide variety of domains. We advocate tools that adapt to changing
requirements rather than restrict them.

Research on ontology models and tools has become commonplace in the last
few years. The OWL languages for capturing ontological properties [6], based
on RDF, have become W3C recommendations. While work on ontologies show
promise for capturing complex relationships across domains, adoption has been
slow due to practical issues. Usually ontology tools assume that a Ontologist,
Knowledge Engineer, or Cybrarian [22] is available to model source metadata
in the target system. This task is far from trivial, which is why job titles such
as those mentioned have been invented. Our framework streamlines the process
of converting scattered source data to machine-processable metadata. Inferring
and exploiting the complex relationships supported by ontology models remains
future work.

The Grid [10] community has recognized the need for a comprehensive meta-
data management solution in Grid environments. The MCAT metadata infor-
mation catalog supports metadata processing in the context of the San Diego
Super Computing Center’s Storage Request Broker (SRB) [5]. More recently,
the Metadata Catalog Service (MCS) [25] has been shown to perform well un-
der heavy query workloads and large database sizes [1]. Our goals differ from
these systems, however. We are working toward a system that can adapt to
evolving requirements with little or no user intervention. The MCAT system
is designed to process metadata queries over using specialized query structures.
While the schemas providing structure to the data are not necessarily fixed, users
must explicitly update the schema to reflect changing requirements. The ability
for MCAT to handle frequent changes of this kind over populated databases is
unclear. However, the infrastructure issues such as location transparency and
replication addressed by this research are important and complementary to our
own work.

7 Future Work

There are several research directions to follow based on this work, primarily in
the area of finding and exploiting richer structures in the RDF data. Currently we
infer simple groupings from the data patterns, and we discussed using functional
dependencies to further refine the schema. However, views defined by users in
the web interface provide very important information as to how users will access
their data. Beyond simply materializing these views, the schema can be designed
to make these user views efficient. Finding automatic techniques to transform
the schema based on user-defined views remains open.

Although we acknowledge that inferred functional dependencies can lead to
improved schema design, we have not applied the same analysis to other data
dependencies from relational theory: join dependencies and inclusion dependen-
cies. In fact, a rigorous interpretation of these dependencies in our domain would
be useful.

We exploit patterns in the metadata stream to facilitate query expression and
improve performance. However, a schema serves another purpose as well: enforce-
ment of constraints on the data. If patterns found by the system are acknowl-
edged by users, the system could promote the patterns into hard constraints.
After this promotion, violations of the constraints in the metadata stream would
be rejected outright as errors. Providing a flexible transition between reactive
and proactive pattern exploitation presents interesting theoretical and practical
challenges.

The query interface provided via the web supports only simple natural joins,
making many useful queries impossible to express. We predict that an interface
can be designed that supports all relevant queries in our scientific domain without
requiring the full power of SQL.

8 Acknowledgements

This work was supported by

References

[1] MCAT - a meta information catalog.
http://www.npaci.edu/DICE/SRB/mcat.html.

[2] Dublin core metadata. http://dublincore.org/index.shtml, 1997.
[3] Content standard for digital geospatial metadata.

http://www.fgdc.gov/metadata/metadata.html, 2004.
[4] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-commerce

data. In The VLDB Journal, pages 149–158, 2001.
[5] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage resource

broker. In Proceedings of the Centers for Advanced Studies Conference,
Toronto, Canada, November 1998.

[6] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. Web ontology language ref-
erence. W3C Recommendation, http://www.w3.org/TR/2003/CR-owl-ref-
20030818/, 1999.

[7] D. Beckett and B. McBride. RDF/XML syntax specification.
http://www.w3.org/TR/rdf-syntax-grammar/, 2004.

[8] D. Brickley and R. V. Guha. RDF vocabulary description language 1.0:
RDF Schema. http://www.w3.org/TR/rdf-schema/, 2004.

[9] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic ar-
chitecture for storing and querying rdf and rdf schema. In I. Horrocks and
J. Hendler, editors, Proceedings of the First Internation Semantic Web Con-
ference, number 2342 in Lecture Notes in Computer Science, pages 54–68.
Springer Verlag, July 2002.

[10] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets. Journal of Network and Computer Ap-
plications, 23:187–200, 1999.

[11] D. Florescu and D. Kossmann. Storing and querying xml data using an
rdmbs. IEEE Data Engineering Bulletin, 22:27–34, 1999.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational
operator generalizing group-by, crosstab and sub-totals. In ICDE, pages
152–159, 1996.

[13] R. V. Guha. rdfDB : An RDF Database. http://www.guha.com/rdfdb/,
2001.

[14] P. Hayes and B. McBride. Rdf semantics. W3C Recommendation,
http://www.w3.org/TR/rdf-mt/, 2003.

[15] I. A. Howes, M. C. Smiths, and G. S. Good. Understanding and deploying
LDAP directory services. Technical report, 1999.

[16] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl. RQL: A declarative query language for RDF. In The Eleventh
International World Wide Web Conference.

[17] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Query-
ing RDF descriptions for community web portals. In Journees Bases de
Donnees Avancees, pages 133–144, 2001.

[18] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. Schemasql: An
extension to SQL for multidatabase interoperability. Database Systems,
26(4):476–519, 2001.

[19] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing
the semantic web through RVL lenses. In Second International Semantic
Web Conference, pages 20–23, 2003.

[20] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the Uni-
versal Relation Model. ACM Transactions on Database Systems (TODS).

[21] H. Mannila and K.-J. Räihä. Algorithms for inferring functional dependen-
cies from relations. Data and Knowledge Engineering, 12(1):83–99, 1994.

[22] D. L. McGuinness. Conceptual modeling for distributed ontology environ-
ments. In Proceedings of The Eighth International Conference on Concep-
tual Structures, 2000.

[23] L. Miller. RDF Squish query language and Java implementation. Public
draft, Institute for Learning and Research Technology, 2001. http://ilrt.org/
discovery/2001/02/squish/.

[24] E. Robillard. GenericDB. http://www.genericdb.com/.
[25] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Maho-

har, S. Pail, and L. Pearlman. A metadata catalog service for data intensive
applications. In Proceedings of the 2003 ACM/IEEE conference on Super-
computing, November 2003.

[26] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of
Postgres. TKDE, 2(1):125–142, 1990.

