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ABSTRACT. Environmental Observation and Forecasting Systems (EOFS) create new opportunities and challenges for generation 
and use of environmental data products. The number and diversity of these data products, however, has been artificially constrained by 
the lack of a simple descriptive language for expressing them. Data products that can be described simply in English take pages of 
obtuse scripts to generate. The scripts obfuscate the original intent of the data product, making it difficult for users and scientists to 
understand the overall product catalog. The problem is exacerbated by the evolution of modern EOFS into data product “factories” 
subject to reliability requirements and daily production schedules. New products must be developed and assimilated into the product 
suite as quickly as they are imagined. Reliability must be maintained despite changing hardware, changing software, changing file 
formats, and changing staff. We present a language for naturally expressing data product recipes over structured and unstructured 
computational grids of arbitrary dimension. Informed by relational database theory, we have defined a simple data model and a handful 
of operators that can be composed to express complex visualizations, plots, and transformations of gridded datasets. The language 
provides a medium for design, discussion, and development of new data products without commitment to particular data structures or 
algorithms. In this paper, we provide a formal description of the language and several examples of its use to express and analyze data 
products. The context of our research is the CORIE system, an EOFS supporting the study of the Columbia River Estuary. 
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1. Introduction  

Scientific data processing consists of two distinct steps: 
dataset retrieval and dataset analysis. These tasks are not 
difficult when the amount of data is modest: Datasets can be 
retrieved by browsing the filesystem, analysis routines can be 
invoked manually, and the resulting data products can be 
returned to the filesystem and organized in an ad hoc manner. 
However, as the amount of data grows, a scalable and 
comprehensive set of policies, embodied by some form of 
data management system, is required. Existing database 
technology supports dataset retrieval, but dataset analysis 
must be performed using specialized programs. These 
specialized programs, however, are generally designed for 
analyzing one dataset at a time, and are difficult to incorporate 
into large-scale data management systems. Scientists need to 
apply the same program to hundreds or thousands of datasets 
simultaneously, compose programs in non-trivial ways, and 
author new programs at a rapid rate. The focus of our work 
has been to understand the fundamental manipulations per-
formed by such programs, and propose a simple language that 
can express such manipulations. 

Scientific datasets are often characterized by the topo-
logical structure, or grid, over which they are defined. For 
example, a timeseries is defined over a 1-dimensional grid, 
                                                        
  * Corresponding author: bill@cse.ogi.edu 

while the solution to a partial differential equation using a 
finite element method might be defined over a 3-dimensional 
grid. Grids therefore seem an appropriate concept on which to 
base a scientific data model.  Indeed, others have observed 
that grid patterns appear frequently in a wide range of 
domains (Berti, 2000; Moran, 2001; Kurc et al., 2001; 
Schroeder et al., 2000; OpenDX, 2002; Treinish, 1996; Haber 
et al., 1991). What has not been previously observed is the 
existence of simple patterns in grid manipulations; that much 
of the extensive library code provided with scientific 
visualization systems, for example, can be cast in terms of just 
a few fundamental operators? 

Our context for studying these gridded datasets is CORIE, 
an Environmental Observation and Forecasting System 
(Baptista et al., 2000; Wilkin et al., 1999) designed to support 
scientific and industrial interests in the Columbia River 
Estuary. The CORIE system simulates and measures the 
physical properties of the estuary, generating 5GB of data and 
over 100 data products daily (with 1000s of intermediate files), 
including visualizations, aggregated results, and derived 
datasets. A standard product suite is generated daily. The tasks 
required to generate the product suite are organized into a data 
product pipeline. Individual data products are used for varied 
purposes including salmon endangerment studies, 
environmental impact assessments, and as inputs to 
oceanographic simulations. Figure 1 shows the CORIE grid 
domain for solving the 3-dimensional transport equations 
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using an Eulerian-Lagrangian finite element method. The 
horizontal grid is parallel to the water’s surface extends from 
the Baja peninsula up to Alaska, though the Columbia River 
Estuary and the ocean waters around the mouth of the river 
have the greatest concentration of grid elements. Using a 
vertical grid to partition the depth of the river, a 
3-dimensional grid can be generated. Time steps add a fourth 
dimension. 

 
 

 

Longview 
Upstream limit

Bonneville 
     Dam 

 Willamette  
 Falls  

 
Figure 1. The CORIE grid, extending from the Baja peninsula 
to Alaska, to model the influence of the Columbia River. 
 

Data defined over this grid include the physical charac-
teristics of the flowing water: velocity, temperature, salinity, 
elevation. Three classes of data products in the product suite 
are contour plots projected onto the horizontal grid, contour 
plots projected onto some vertical grid, and timeseries plots. 
Horizontal contour plots take a “slice” through the grid in the 
xy plane, perhaps aggregating over the vertical dimension. 
Figure 2a shows a horizontal slice at a depth of three meters. 
Vertical contour plots such the one in Figure 2b also “slice” 
through the grid, but in the vertical direction. In this case, the 
unstructured horizontal grid in Figure 1 does not appear in the 
output; rather a new grid is formed from user-selected points 
in the xy plane extended in the vertical dimension. Figure 2b 
was taken from points along a channel near the mouth of the 
river. Timeseries data products are standard 2-dimensional 
graphs with one or more variables plotted against time. 

 
1.1. Challenges 

The existing CORIE data product pipeline consists of C 
programs controlled by Perl scripts. A fixed set of data 
products can be reliably generated using this approach, but 
new data products are difficult to define and incorporate into 
the product suite. In fact, design, construction, and 
assimilation of new data products are currently intractable for 
those not intimately familiar with CORIE file formats and 
processing environments; these tasks are certainly beyond the 
reach of non-technical consumers of CORIE data. Our work 
takes steps toward lowering development time for both expert 
users and non-expert users. 
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Figure 2. Two data products in the CORIE system: (a) 
Horizontal slice showing salinity in the estuary; (b) Vertical 
slice along a channel of the same data. 

 
Since many data products are visualizations, our first ap-

proach was to investigate mature visualization libraries to 
replace or augment our custom codes. IBM's Data Explorer 
(DX) (OpenDX, 2002) and the Visualization Toolkit (VTK) 
(Schroeder et al., 1996) are free software libraries 
implementing efficient visualization algorithms in an 
organized library. We gave these libraries most of our 
attention since they are freely available and widely used. 
However, other tools such as Geographic Information 
Systems (GIS) and general scientific data management 
platforms are relevant and are discussed in Section 6. 

DX and VTK support a rich set of visualization opera-
tions, but their use did not significantly lower development 
time.  New data products were still difficult to define and 
assimilate.  Minor changes in the conceptual data product 
specification required major changes to the code.  Data 
products that were easy to describe in English still required 
rather obtuse programming constructs.  Even experienced 
users of VTK had trouble applying their knowledge to the 
CORIE datasets.  Prior to implementation, we described data 
products in English using natural concepts such as a 
“horizontal or vertical slice” and the “maximum over depth”.  
Unfortunately, these concepts did not always have analogous 
operations in the library.  We significant time translating our 
concepts into the “language” of VTK and DX.  Specifically, 
the following concepts proved useful but were poorly 
supported by both libraries: 
z  Cross Product Grids. We found that the notion of cross 

product is able to express many common grid ma-
nipulations: constructing higher dimensional grids, 
repeating data values, and describing the relationship 
between two grids. 

z  Shared Grids. Many datasets tend to be defined over the 
same grid, with each dataset corresponding to a variation 
in simulation parameters, date, code version, algorithms, 
hardware, or other variables. 

z  Intersecting Grids. Intersecting grids are a generalization 
of shared grids; we noticed that even if two grids were 
not precisely equivalent, one might contain another. This 
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situation arises, for example, when cutting away a 
portion of a grid based on data values. The smaller grid is 
subgrid of the original, full-size grid. This relationship 
can be exploited when reducing one dataset based on a 
predicate defined on another. For example, the plume of 
freshwater from the river that jets into the ocean is an 
important feature of an estuarine system. The plume is 
defined by choosing a salinity threshold below that of 
seawater, 34 psu. If we wish to visualize the temperature 
of the plume, we must identify the relevant values in a 
temperature dataset based on a predicate defined over a 
salinity dataset. This task is easier if one grid is known to 
be a subgrid of another. 

z  Combinatorial algorithms. Berti observes that combi-
natorial algorithms for grid manipulation are superior to 
geometric algorithms (Berti, 2000). For example, finding 
the intersection of two subgrids derived from a common 
supergrid can be implemented efficiently by using just 
the identifiers for the grid elements (say, indices into an 
array). 

z  Aggregation. Many grid manipulations can be cast as 1) a 
mapping of one grid onto another, and 2) the aggregation 
of the mapped values. Both DX and VTK offer extensive 
libraries for performing common instances of this 
manipulation, but neither provides a general aggregation 
abstraction. 

z  Time. We found it useful to reason about the CORIE grid 
in four dimensions, thereby avoiding special machinery 
for handling time. 

z  Unstructured Grids. Structured grids allow cell 
neighbors to be computed rather than looked up. Conse-
quently, manipulating structured grids is easier than 
manipulating unstructured grids, and the limited 
availability of algorithms over unstructured grids reflects 
this difference. Since CORIE involves both structured 
grids (the time dimension) and unstructured grids (the 
horizontal dimensions), we found it useful to reason 
about structured and unstructured grids uniformly. 
 

1.2. Requirements 
The concepts we use to reason about data products oper-

ate at a higher level of abstraction than do the library 
functions. That software provides a variety of specialized 
functions for processing particular datasets; we found that a 
few general concepts could be reused across a variety of 
datasets. Our experiences lead us to state the following 
requirements for scientific data manipulation software. 

Grids should be first-class. Existing systems consider 
the grid a component of a dataset, rather than as an 
independent entity. Grids shared across multiple datasets are 
difficult to model with this scheme; the grid information must 
be copied for each. In addition, the grid information is often 
known before the dataset is available. If grids are first class, 
some computations can be performed before the dataset is 
available, improving runtime performance. 

Equivalences should be obvious. There are different 

ways to express data products using different software tools, 
and even different ways to express data products within a 
single software tool. The intricacies of a complex software 
library make it difficult to find and exploit these equivalences. 
For example, two data products might both operate over the 
same region around the mouth of the Columbia River. The 
computation to produce this region should be shared to avoid 
redundant work. Systems oriented toward processing only 
individual datasets do not provide an environment conducive 
to sharing intermediate results. 

The first recommendation suggests the need for a new 
data model, and the second recommendation suggests the 
need for a simpler set of operators with which to manipulate 
the data model. We have found that the methodology used to 
develop relational database systems provide guidance in 
designing these tools. We do not prescribe applying relational 
database technology itself to the problem; rather that the 
original motivations for developing relational systems are 
analogous to the motivations we have described. 

 
1.3. Relational Database Methodology 

The relational model was developed based on the obser-
vation that data was frequently expressed as tables. A table 
(relation) is a set of tuples, and each tuple in a table has the 
same number of attributes. Comma-delimited files, 
spreadsheets, and lists of arrays all might express tabular data. 
Although the table constructs themselves were ubiquitous, 
their representations varied widely. Some systems used 
physical pointers to memory locations to relate data in 
different tables. Other systems used tree structures to model 
related tables. Application programs de-referenced pointers or 
navigated the tree structures to gather results. These systems 
proved to be brittle with respect to changing data 
characteristics. Whenever the database was reorganized to 
accommodate new data or new applications, existing 
applications would fail. 

Codd is credited with the observation that the problem 
was not a fundamental property of tabular data, but rather a 
consequence of implementation design choices (Codd, 1970, 
1990). He coined the term data dependence to describe the 
problem. Data dependent software is too tightly coupled to a 
particular set of data characteristics, such as representation, 
format, or storage location. 

To solve the problem, Codd advocated a relational alge-
bra that facilitated a separation of logical and physical 
concerns. The user manipulates only the logical data model, 
while the system manipulates the more complex physical data 
representation. This approach delivers several benefits: 
z  Data Independence. Queries written at the logical level 

can tolerate changes to database size, location, format, or 
available resources. Contrast this situation with 
customized programs that reference file names, must 
parse file layout, or assume a particular amount of 
available memory. 

z  Expressiveness. Queries are expressed over a simple data 
model rather than the necessarily complex data rep-
resentation. Only a few operators are necessary to ex-
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press a provably complete set of data mani- pulations. 
z  Cost-Based Optimization. Relational optimizers can 

generate a set of physical query plans, each of which 
faithfully implements a given logical query. The opti-
mizer has two primary axes to explore in plan generation. 
(1) The optimizer generates equivalent plans by invoking 
algebraic identities admitted by the formal data model. (2) 
The optimizer can select from a range of 
implementations for each operator in the logical query, 
thereby generating additional equivalent physical plans.  
The complexity of these tasks is hidden inside the 
database software; the user need only declare the results 
that he or she wants. Each of the equivalent physical 
plans can be assigned an estimated cost based on the 
characteristics of the data, such as size, distribution of 
values, and the availability of indices. The plan with the 
lowest estimated cost is finally executed. Systems based 
on the relational model emerged and began to exhibit the 
benefits described above. Other database paradigms were 
quickly outmoded. 
Of course, grids are not exactly tables, and operations 

over gridded datasets are not naturally expressed in the 
relational algebra. In particular, grids carry much more 
information than tables, and scientists need to perform 
complex calculations instead of simple queries. We can learn 
something from Codd’s approach nonetheless. By studying 
existing systems designed to manipulate business data, he was 
able to extract a handful of operators able to express a 
complete set of logical manipulations over a logical data 
model. In this paper, we take a similar approach. We have 
defined a data model and manipulation language that is simple 
enough to reason about formally, but rich enough to express 
real data products. 

The data model consists of grids for modeling the topol-
ogy of a partitioned domain and gridfields for modeling the 
data associated with that domain. A grid is constructed from 
discrete cells grouped into sets representing different 
dimensions. That is, a grid consists of a set of nodes, a set of 
edges, a set of faces, and so on. A gridfield associates data 
values to each cell of a particular dimension using a function. 
Function abstractions allow us to reason about data without 
concern for file formats, location, size, or other 
representational concerns. If a function can be written that 
maps grid cells to data values, a gridfield can model the 
dataset. To manipulate gridfields, one constructs a “recipe” 
from a sequence of operators. Together these operators are 
rich enough to express the data product suite of the CORIE 
system, and appear to be general enough to express many 
other data products as well. 

In the next section, we develop the data model and basic 
grid operations. In Section 0, we introduce the operators that 
form the core language and give simple examples of their use. 
In Sections 0 and 0, we use the language to develop and 
analyze examples of real data products. In Section 0, we 
discuss related work in scientific data management and 
modeling. The last section includes discussion of future work 
and conclusions we have drawn. 

2. Data Model 

Existing data models for gridded datasets consist of two 
components: 
z A representation of the topology and geometry 
z A representation of the data defined over the topology 

Most systems and practitioners use the word geometry to 
refer to the first component, few use the word topology. It is 
important to realize that the two concepts are distinct. The 
study of topology arose from the observation that some 
problems depend only on “connection” properties (such as 
adjacency and containment) and not the geometric properties 
(such as shape or size). For example, Figure 3 shows three 
geometric realizations of the same topological grid. Topology 
involves only the properties of neighborhoods of points and 
not absolute positions in a metric space. Our data model 
makes the same distinction, and does not require absolute 
positions in space nor time. This approach reduces the 
complexity of the data model; geometric data require no 
special treatment. We view geometric data as just that – data. 
We claim that grid topology is the distinguishing feature of 
scientific data, and the only feature requiring specialized 
solutions. All other data can be modeled as functions over the 
topological elements. 

 
 

 (a) (c) (b) 

Figure 3. Three geometric realizations of one grid.  
 

2.1. Grids 
In this section we present the data model over which we 

will define our language. The fundamental unit of ma-
nipulation is the grid. Intuitively, grids are constructed from 
nodes and connections among the nodes. A sequence of nodes 
declared to be connected form a cell. A cell is interpreted as 
an element of some particular dimension. We allow cells of 
combination of dimensions to be grouped together as a grid. 
There is a significant flexibility with this construction. We can 
distinguish between grids made up of just triangles and nodes, 
versus grids made up of triangles, their edges, and nodes. In 
fact, grids may be constructed from any combination of nodes, 
edges, faces, etc. We have chosen simplicity and flexibility at 
the expense of allowing some odd grids. 

Definition A 0-cell or node is a named but otherwise 
featureless entity. 

The naming scheme for nodes depends on the imple-
mentation. Array-based implementations may use integer 
indices to refer to nodes, while an object oriented implemen-
tation might use object identifiers. 



B. Howe et al. / Journal of Environmental Informatics  

 

 27

Definition A k-dimensional cell, denoted k-cell (Berti, 
2000) or just cell, is a sequence of 0-cells plus an associated 
positive integer dimension k. The dimension of the k-cell is 
constrained, but not defined, by the number of nodes used to 
represent it. Specifically, if n is the number of nodes in the 
sequence, then n = 1 implies k = 0, and n > 1 implies k < n. To 
obtain the nodes that define a k-cell c as a set rather than a 
sequence, we write V(c). 

Intuitively, a 1-cell is a line segment, a 2-cell is a polygon, 
a 3-cell is a polyhedron, and so on. The number of nodes in a 
k-cell is not fully specified in order to allow non-simplicial 
polytopes such as squares and prisms. (A simplex is the 
polytope of a given dimension requiring the fewest number of 
nodes. The 2-dimensional simplex is the triangle. The 
3-dimensional simplex is the tetrahedron.) To interpret a 
sequence of nodes as a particular shape, implementations 
require that a cell type be assigned to each sequence. In this 
paper, we will assume that cell types are determined and 
maintained at the physical layer without explicit guidance 
from the data model. 

Definition A grid G is a sequence [G0, G1, …] where Gk 
is a set of k-cells. A grid must be well formed: There can be no 
k-cells in Gk that reference a node that is not in G0. The 
dimension of a grid is the maximum k of all cells in the grid. 

In the diagram at the left of Figure 4, the 2-dimensional 
grid A has three 0-cells, three 1-cells, and one 2-cell. The 
1-dimensional grid B has two 0-cells and one 1-cell. Note that 
a grid consisting of only nodes is 0-dimensional. 

Intuitively, a grid partitions a space into cells of various 
dimensions. Note that this definition is purely combinatorial; 
we have not described the space in which the grid is 
embedded. More precisely, we have not specified a geometric 
realization for the cells. Geometry in our model is captured as 
a gridfield, which we will describe in the next section. One 
final definition gives the relationship between k-cells that 
share nodes. The notion of incidence captures the intuition 
that we should be able to retrieve the cells that “touch” a 
given cell. 

Definition A cell c is incident to another cell e, written 
c ep , if all of the nodes referenced by c are also referenced 
by e. That is, c ep  if V( c ) V( e )⊆ . 

Equivalence and containment relationships between two 
grids can be derived from the definition of incidence. To 
maintain such a relationship, the implementation must 
establish a 1-1 correspondence between the nodes of the two 
grids, and then inspect the induced incidence relationships 
between the cells of other dimensions. Arbitrary grids will not 
often be tested for equivalence or containment, however. We 
have found that many grids can be derived from just a small 
set of base grids. Keeping track of the relationships between 
grids amounts to keeping track of the derivations performed 
on this small base set. Therefore, equivalence and 
containment can be inferred by a comparison of derivations 
rather than an expensive cell-by-cell comparison of grids. 
Reasoning about derivations in this manner is very difficult 
without a simple data model and simple operations. 

Before we describe how to associate data values with a 
grid to create a gridfield, we introduce operators for 
manipulating grids themselves. 

 

2.2. Cross Product 
The cross product of two grids generates a higher dimen-

sional grid based on cross products of their constituent sets of 
cells. 

Consider two zero-dimensional grids, A and B, each 
containing a single node a and b respectively. Their cross 
product, A B⊗ , would be a new grid also with a single node, 
which we refer to as ab. If B consisted of two nodes, b1 and b2, 
then A B⊗ would consist of two nodes, ab1 and ab2. If B 
additionally had a 1-cell (b1, b2) then the cross product would 
have the nodes ab1 and ab2, and one 1-cell connecting them, 
written (ab1, ab2). 

A less trivial example is shown at the left of Figure 4. 
Intuitively, we are generating a prism from a triangle and a 
line segment. In our notation, we have 
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Figure 4.  Two examples of the cross product operator. 



B. Howe et al. / Journal of Environmental Informatics  

 

 28

{ }
{ } { },

, , ,{( , ),( , ),( , )},{( , , )}

1,2 (1,2)

A a b c a b b c c a a b c
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  
  

=

=
      (1) 

 
The cross product operation is denoted 
 

G A B= ⊗                                    (2) 
 
where  

0 0 0

1 1 0 0 1

2 2 0 1 1

3 2 1

G A B
G A B A B
G A B A B
G A B

= ×
= × ∪ ×
= × ∪ ×
= ×

 

 
Evaluating these expressions, we obtain 

 

0 1 2 3[ , , , ]G G G G G=  

0 { 1, 1, 1, 2, 2, 2}G a b c a b c=  

1 {( 1, 1),( 1, 1),( 1, 1),( 2, 2),( 2, 2),( 2, 2)}
{( 1, 2),( 1, 2),( 1, 2)}

G a b b c c a a b b c c a
      a a b b c c

=
∪

2 {( 1, 1, 1),( 2, 2, 2)}
{( 1, 1, 2, 2),( 1, 1, 2, 2),( 1, 1, 2, 2)}

G a b c a b c
      a b b a b c c b c a a c

=
∪

 

3 {( 1, 1, 1, 2, 2, 2)}G a b c a b c=                      (3) 

 
The 3-cell in the new grid is a prism, resulting from the 

triangle in A2 sweeping out a solid in the third dimension. The 
2-cells in the new grid might be triangles or parallelograms, 
depending on how they were derived. The edges in A1 and the 
edges in B1 together form parallelograms in G2, while the 
triangles in A2 and the nodes in B0 form triangles in G2. 

In general, 
G A B= ⊗  is defined as 
 

0 1 0 1 0 1[ , ,..., ] [ , ,..., ] [ , ,..., ]G G G A A A B B Bγ α β= ⊗     (4) 

 
where 

0

i

i j i j
j

G  A B −
=

= ×U  

 
The product operator introduces a kind of “regularity" 

(Haber et al., 1991) even if the two component grids are 
irregular. Consider an extension of the example at the left of 
Figure 4, in which a 2-dimensional irregular grid in the xy 
plane is repeated in a third dimension z. The triangles in the xy 
plane form prisms as they sweep out a space in z. The edges 
of the triangles will sweep out rectangles. The nodes will 
sweep out lines. Now we have a true 3-dimensional grid that 

is usually classified as “irregular" in visualization applica- 
tions. But it is important to note that at every z coordinate, the 
xy grid is the same. We can sometimes exploit this knowledge 
about how the grid was constructed to map values from one 
grid to another efficiently. 

The cross-product operation is more flexible than might 
be immediately apparent. The operation at the right of Figure 
4 illustrates the cross product of A and a 0-dimensional grid B'. 
A similar grid arises in the CORIE domain, since the solutions 
to the governing differential equations are not actually solved 
in three dimensions. Since the river dynamics are dominated 
by lateral flow, the equations are solved in two dimensions, 
but at each depth in the vertical grid. Data values associated 
with the z dimension cannot be unambiguously assigned to the 
prisms in the new grid. For a grid of n nodes in the z dimen-
sion, there are n triangles, but n – 1 prisms. Our model 
exposes this potential ambiguity; other models force an 
assumption about how the data values will be assigned. 

 
2.3. Union and Intersection 

The union of two grids can be used to model overlapping 
or piecemeal grids. For example, in the context of our 
estuarine simulation, atmospheric condi- tions are inputs 
(forcings) to the domain of the solution. The data for these 
forcings are a combination of overlapping grid functions 
provided by two universities’ atmospheric models. Each is 
defined on a separate grid. The union operation allows 
reasoning about these two grids as one. The union operator 
might also be used when partitioning and recombining grids 
in a parallel environment, or to bring the interior of a grid (say, 
sets of nodes and triangles) together with a representation of 
its boundary (a set of edges). 

Formally, 
G A B= ∪   is defined as 

0 1 0 1 0 1[ , ,..., ] [ , ,..., ] [ , ,..., ]G G G A A A B B Bγ α β= ∪    (5) 

 
where 

i i iG A B= ∪  

The intersection operator is often used to reduce one 
grid based on the k-cells in another. Frequently, intersection is 
used only on grids of equal dimension, though the definition 
does not enforce this limitation. We will use grid intersection 
to define the merge operator over gridfields in Section 0. 

BAG ∩= is defined as 
 

0 1 0 1 0 1[ , ,..., ] [ , ,..., ] [ , ,..., ]G G G A A A B B Bγ α β= ∩    (6) 

where 

i i iG A B= ∩  

 
2.4. GridFields 

Grids express only the topology of a gridded dataset. To 
express the data associated with the grid, we use a function 
abstraction. A gridfield maps the k-cells for some k of a grid G 
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to data values. 
Definition A gridfield, written Gk

g, is a triple (G, k, g) 
where g is a function from the k-cells of G to data values. The 
type of a gridfield, written t[Gk

g] is the return type of the 
function g. 

The primitive types we will work with in this paper are 
Integers, Floats, Strings, and Booleans. We will also make use 
of sets and tuples. 

Definition A tuple is a sequence of values of possibly 
different types. The tupling function tup takes n arguments 
and generates an n-tuple, unnesting if necessary. For example, 
tup ( , , , ) , , ,a b x y a b x y= . (Note that we use angle brackets 

to enclose tuples.) In our notation, the singleton tuple x  is 
identical to the value x. 

We adopt the database convention of accessing tuple 
components by name rather than by position. This named 
perspective effectively makes the order of the tuple compo-
nents irrelevant. In the functional programming community, 
record structures have been proposed that use a similar 
mechanism. Selector functions (Jones et al., 1999) such as 
“salinity” or “velocity” are used to access the elements of a 
record type rather than using positional access functions such 
as “first” or “second”. 

In our domain, gridfields are primarily used to model the 
physical quantities being simulated. In one version of the 
CORIE output data, salinity and temperature values are 
defined over 2-cells at each depth of a product grid like that at 
the right of Figure 4. Velocity is defined over the nodes 
(0-cells) in the same grid. Water elevation is a gridfield over 
the 2-cells of the horizontal two dimensional grid. In a more 
recent version, the data values are associated with the nodes 
of the grid rather than the 2-cells. This change had drastic 
consequences: All the code in the system had to be 
meticulously checked for dependence on the earlier data 
format. Our model is able to capture the difference between 
these two configurations very precisely, exposing affected 
data products and guiding solutions. 

The geometric coordinates that position a node in some 
space are modeled as data too, constituting their own gridfield. 
Specifically, a geometric realization of the CORIE grid is 
given by a gridfield over 0-cells of type 

:float, :float, :floatx y z . Geometric data can be associated 
with more than just 0-cells, however. Curvilinear grids can be 
represented by associating a curved interpolation function 
with each 1-cell. Figure 3 shows three different realizations of 
the same grid; Figure 3c shows such a curvilinear grid. Many 
systems do not support this kind of geometric realization; 
geometric data is associated with the nodes only (as 
coordinates) and geometry for higher dimensional cells is 
linearly extrapolated from the cells coordinates. The 
flexibility and uniformity obtained by modeling all data as 
functions is a primary strength of this model. Grids of 
arbitrary dimension, with arbitrary geometry, can be modeled, 
manipulated, and reasoned about just as easily as simple, 
low-dimensional grids. 

3. Language 

In this section we present four operators over gridfields 
that together can express a variety of data products. In Section 
0, we will give examples from the CORIE data product suite 
to provide illustrations of the language’s expressiveness. First 
we give a short intuitive description of each operator. 
z The bind operator associates data to a grid to construct a 

gridfield. 
z The merge operator combines multiple gridfields over 

the intersection of their grids. 
z The restrict operator changes the structure of a gridfield 

by evaluating a predicate over its data. 
z The aggregate operator transforms a gridfield by 

mapping it onto another grid and aggregating as appro-
priate. 
We envision other operators being defined as the need 

arises, but these represent the core language. 
 

3.1. Bind 
The bind operator constructs a gridfield from a grid and 

a function. Implementations of gridfields will not always use 
a literal function. If our datasets are stored in files, a function 
implementation might have to open the file, seek to the 
correct position, read the value, and close the file on each call. 
For efficiency, we would prefer to read in a large block of 
values at a time. However, the function abstraction is 
appropriate for defining our gridfields at this level of 
abstraction. As long as such a function could be defined, this 
model is appropriate. 

Definition Let A be a grid and f be a function from Ak to 
data values. Then bind(A, k, f) = Ak

f where Ak
f is a gridfield. 

The definition may seem trivial since we simply form a 
triple from the three arguments. However, this operator has 
significance in an implementation as a constructor of 
gridfields. The bind operation can encapsulate a procedure to 
validate data availability, create indices, or otherwise prepare 
the values for manipulation as a gridfield. In our model, bind 
is just a declaration that the data values represented by the 
function f match the grid given by G. Note that the same 
function can be bound to different grids, as long as they share 
the same set of k-cells. 
 

3.2. Restrict 
The restrict operator takes a predicate over the data val-

ues of a gridfield and filters out k-cells associated with values 
that do not satisfy it. A frequent use of restrict in our 
experience is to “zoom" in on a particular region by filtering 
out those cells whose geometry places them outside a 
bounding box. Note that since geometry is simply data in our 
model, this “zoom" operation is treated identically to other 
filtering operations. 

The naïve semantics of restrict is to simply remove those 
k-cells that do not satisfy the predicate. However, recall that 
k-cells are defined using references to nodes. If referenced 
nodes are removed, the grid will not be well-formed. To 
enforce well-formedness, we must also remove all cells that 
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reference removed nodes (Figure 5). 
Definition Let Ak

f be a gridfield, where f is a function 
from Ak to data values of type t.  Let p be a predicate over 
data values of type t. Then restrict(p)[Ak

f] returns a gridfield 
Gk

f. In the case 0k > , 0 1 n, ,...,G G G G  = , where 

{ | , ( ) }k kG e e A p f e true= ∈ =o and i iG A=  for all ki ≠ . 
In this definition, the predicate p is used to filter out some 
cells of dimension k, but all other cells are included in G. 
(Note that o  denotes function composition.) In the case 

0=k , Gk is defined as before but we must ensure 
well-formedness by removing any cells that reference deleted 
nodes. That is, { | , ( ), ( ) }i iG e e A v V e p f v true= ∈ ∀ ∈ =o  
for all i k≠ . 

 
3.3. Merge and Cross Product 

The merge operator combines two gridfields over the 
intersection of their grids. More precisely, merge computes 
the intersection grid of its two arguments, and produces a 
gridfield over that intersection that returns pairs of values. If 
the two grids are equal, as they can frequently be in our 
experience, then merge simply pairs the values from each 
argument but leaves the base grid unchanged. Figure 6 shows 
an illustration of this operator. 

Definition Let Ak
f and Bk

g be gridfields. Then merge [Ak
f, 

Bk
g] = Gk

h where ( )G A B= ∩ , and ( ) ( ), ( )h e f e g e= for 

every cell  i je A B∩∈ . 

Merge is related to the intersection operation over the 
underlying grids. Similarly, we can lift the cross product 
operator defined for grids and redefine it for gridfields. 

Definition The cross product of two gridfields, written 
Ai

f ⊗ Bj
g is a gridfield Gk

h where G = A ⊗ B, k = i + j, and 
( ) ( ), ( )h e f e g e=  for e Ai∈  and j c B∈ . 

The union operator can also be applied to gridfields.  
However, there are some technical complexities, and we omit 
the formal definition here. 

 

3.4. Aggregate 
The most expressive operator in our language is aggre-

gate. Most significant manipulations involve one or more 
aggregate operators. As the name implies, aggregate is used to 
combine multiple values from one gridfield into a single value 
in another grid. There are two steps to the process. First, a 
source gridfield's domain is mapped to the target gridfield's 
domain. An assignment function takes a k-cell from the target 
grid and returns a set of j-cells in the source grid. Next, all the 
source cells mapped to a particular target cell are aggregated 

 

Figure 5.  Illustration of the merge operator. 
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using an aggregation function. 
Consider a timeseries of temperature values for a par-

ticular point in the river. We partition the time dimension 
using a 1-dimensional source grid S, as shown in Figure 7a. 
One use of the aggregate operator is to perform a “chunking” 
operation to coarsen the resolution of the grid. The 
assignment function assigns each node in the target grid T a 
set of n nodes, the “chunk,” in the source grid S (Figure 7b). 
The aggregation function then, say, computes the arithmetic 
mean of the n nodes to obtain single value (Figure 7c). 

 

 12.1°C12.6 ° C 13.1 ° C 13.2 ° C 12.8 ° C 12.5 ° C 

12.95 ° C 12.45 ° C

a) 

Assign 

Aggregate 

b) 

c) 

{12.8 ° C , 12.5 ° C , 12.1°C}{12.6 ° C, 13.1 ° C, 13.2 ° C} 

12.1°C12.6 ° C 13.1 ° C 13.2 ° C 12.8 ° C 12.5 ° C 
a) 

Assign 

Aggregate 

b) 

c) 

{12.8 ° C , 12.5 ° C , 12.1°C}{12.6 ° C, 13.1 ° C, 13.2 ° C} 

Figure 7.  Illustration of the aggregate operator.  
 

Definition Let T be a grid and Sj
g be a gridfield of type a.  

Let f be a function from sets of values of type a to values of 
type b. That is, { }:f a b→ . Let m be a function from Tk to 

sets of cells in Fj. That is, { }: k jm T S→ . Then aggregate (T, 

k, m, f)[Sj
g] produces a gridfield Tk

h  where h f g m= o o . By 
abuse of notation, the function g is applied to each member of 
the set returned by the function m. We call T the target grid, S 
the source grid, m the assignment function, and f the aggrega-
tion function. 

Note that the aggregate operator accepts two 
user-defined functions as arguments. This design makes the 
operator very flexible, but also burdens the user with function 
definition. The assignment function in particular seems that it 
might require significant ingenuity to define. However, the 
algebraic properties of our language admit some relief. Since 
our language allows reasoning about how grids are 
constructed, relationships between the cells of two different 
grids can often be defined topologically and simply. 

For example, consider the CORIE grid described in Sec-
tion Error! Reference source not found.. We crossed an 
unstructured 2-dimensional grid (the horizontal grid) in the xy 
plane with a 0-dimensional grid consisting of points along the 
z axis (the vertical grid). We noted in Section 0 that this grid 
should not be considered fully unstructured, though it would 
be considered so in most visualization applications. Instead, 
we want to exploit the fact that the xy grid is duplicated for 
every node in the z grid. 

If this grid were modeled as fully “irregular,” the rela-
tionship between the cross product grid and the horizontal 
grid is lost. Imagine we want to project the values in the cross 

product grid down onto a horizontal “slice” to compute the 
maximum value in each vertical column. To assign the nodes 
of the cross product grid onto the nodes in the horizontal grid, 
most systems appeal to the geometry data. Specifically, for 
each node in the horizontal grid, existing tools must scan 
every node in the full cross-product grid to find those cells 
with matching xy coordinates. With our operators, we can 
derive the fact that the horizontal grid is related to the full grid 
via the cross product operator. We can use this relationship to 
define the assignment function as the cell product, avoiding a 
scan of every node in the full grid. Our experience working on 
the CORIE project has shown that many of the grids found in 
practice are topologically related to just a few “base” grids. 
Since grids are first-class in our language, we are better able 
to model and exploit these topological relationships to 
simplify and accelerate our recipes. 

Not every pair of grids exhibits a simple topological re-
lationship, however. Sometimes it is necessary to scan the 
source or target grids and relate cells using data values. As we 
mentioned in the last paragraph, such data-oriented as-
signment functions can involve extensive iteration; no 
shortcuts based on topology are applicable. In these cases, our 
model does not perform better than existing tools. However, 
pinpointing the cause of the inefficiency as the assignment 
task helps guide further analysis. In existing software, the 
assignment step and aggregation step cannot be reasoned 
about separately, obscuring the cause of inefficiencies. 

 

Figure 8.  Illustration of the CORIE vertical grid.  
 

To further alleviate the burden of defining assignment 
functions (purely topological or otherwise), we offer several 
special cases of the aggregate operator, and promote them as 
operators themselves. Each of the following can be defined in 
terms of the aggregate operator. 
z The apply operator assigns each k-cell to itself and then 

applies a function to the k-cell’s data value. Intuitively, 
apply simply applies a function to each value of the grid, 
and forms a new gridfield with the results. 

z The affix operator changes the domain of the gridfield 
from j-cells to k-cells, applying a function to aggregate 
the results. This operator can transform node-centered 
datasets into cell-centered datasets. 

z The unify operator is used to aggregate over an entire 
grid, producing a single value. The output is a gridfield 
over the unit grid consisting of just a single node. 
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z The project operator is similar to the project operator in 
the relational algebra. One provides the names of the data 
values of interest given by a tuple-valued gridfield, such 
as “velocity” or “salinity,” and all remaining data values 
are removed. 

4. Examples 

In this section we describe and analyze two data products 
used in the CORIE system.  We will show how they can be 
expressed as gridfield manipulations and optimized using 
rewrite rules. 

First we must construct the full grid over which the 
CORIE simulations are computed. Figure 1 shows the 
2-dimensional component of the full CORIE grid. Figure 8 
shows the 1-dimensional component. Our plan is to compute 
the cross product of these two component grids. Note, though, 
that the vertical component in Figure 8 could also be 
represented as a 0-dimensional grid; just a set of nodes. We 
gave an example in Figure 4 of the effect this change has on 
the result of the cross product operator. Using the 
1-dimensional vertical grid, we obtain a 3-dimensional grid 
constructed from prisms, faces, edges, and nodes. Using the 
0-dimensional version of the vertical component, we obtain a 
“stacked” grid, with the 2-dimensional component repeated at 
each depth. Both of these product grids are used at various 
times during the CORIE simulation. Our model admits 
expression of both grids precisely and uniformly. 

For the purposes of this example, we will assume the 
vertical component is 0-dimensional. Indeed, let H be the 
horizontal CORIE grid and let V be the vertical CORIE grid. 
Then 

 
,0 2[ , , , ...] H H   H  = ∅ ∅  

0[ , , ...]V V   = ∅                               (7) 

 
The full CORIE grid is then 
 

G H V= ⊗  

0 0 2 0[ , , , , ...]G H V   H V   = × ∅ × ∅               (8) 

 
Although the simulation code operates over this grid, the 

solution is produced on a smaller grid. To see why, consider 
Figure 8 again. The shaded region represents the bathymetry 
of the river bottom. The horizontal grid is defined to cover the 
entire surface of the water. At depths other than the surface, 
some nodes are positioned underground! The simulation code 
takes this situation into account and produces only valid, 
“wet,” data values to conserve disk space. We must define this 
“wet" grid to obtain an adequate description of the topology 
of the data. The bathymetry data is represented as a river 
bottom depth (a float) for each node in the horizontal grid. 
Therefore, we model bathymetry as a gridfield over the 
horizontal grid H. To filter out those nodes that are deeper 

than the river bottom, we need to compare the depth at a node 
in the product grid G with the bottom depth at the 
corresponding node in H. Figure 9 shows this construction 
using grid operators. 

We point out a couple of details about Figure 9. The 
predicate in the restrict operator is expressed in terms of 
selector functions. Given a 0-cell e, the function component of 
gfFullGrid will return a value ( ) ( ) ( )xy ,bathym ,ze e e . 

Passing this function compo- nent to the selector function z 
returns the third element in the tuple, z(e). 

The gridfield gfWetGrid returns 3-dimensional coordi-
nates and bathymetry information for each 0-cell in the grid. 
The only nodes in the grid are those above the bathymetry 
depth of the river at each point. The grid component of 
gfWetGrid is now ready to be bound to data values supplied 
by the simulation. 

Maximum Salinity. The first data product we will ex-
press using this grid is a 2-dimensional isoline image of the 
salinity in the Columbia River Estuary. An isoline image 
draws curves representing constant values in a scalar field. In 
CORIE, 3-dimensional gridfields for salinity and temperature 
are projected down to two dimensions by aggregating over 
depth and computing the maximum and minimum. Figure 2a 
shows an example of this data product. Figure 9b gives the 
recipe for the maximum salinity over depth. 

The function crossj returns all the cells in one vertical 
column of the 3-dimensional grid. An aggregation operation 
that uses crossj as an assignment function produces a gridfield 
over the 2-dimensional horizontal grid. The value associated 
with each node is the maximum salinity found in the vertical 
column of water located at that node. Figure 2a could be 
generated by applying a contouring algorithm directly to this 
data. In fact, even this contouring operation can be modeled 
as an aggregation with a simple assignment function and an 
aggregation function that associates a line segment with each 
2-cell. 

Plume Volume. The second data product we will de-
scribe is a calculation of plume volume. The plume is defined 
as a region of water outside the estuary that exhibits salinity 
below a given threshold. This definition implies that to obtain 
the plume portion of the grid, we must cut away the river 
portion, and then cut away the portion of the grid with salinity 
values above the threshold. 

Before these cuts, though, we must cut away the portion 
of the grid that is above the surface of the water just as we did 
for the underground values. We have simplified the discussion 
by considering only a single point in time. In practice, we 
would use another cross product to incorporate the 
1-dimensional time grid, since the surface elevation changes 
over time, unlike most models of river bathymetry. 

Figure 9c shows the recipe producing a gridfield over the 
plume portion of the grid, taking into account both 
bathymetry and elevation. In this example, we use a vertical 
grid that has both nodes and edges; it is 1-dimensional. We 
first compute the cross product of the horizontal grid with 
elevation values and the vertical grid with z values. Then we 
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bind the salinity function to the grid computed in Figure 9a, 
and apply a predicate on x to extract the ocean portion of the 
grid. Next, we merge the two gridfields and apply the two 
remaining predicates to filter out those cells positioned above 
the water's surface and those with a salinity value 26 psu or 
greater. 

The gridfield gfPlume returns a 6-tuple 
x,y,z,bathym,elev,salt defined over the nodes. To compute 

the volume, we must calculate the volume of each prism in 
the grid, and sum the values. We have some choices of how 
we might do this. One way would be to 1) use project to 
remove everything but the (x,y,z) coordinates, and 2) use affix 
to produce a gridfield over prisms that returned 6-tuples of 
(x,y,z) coordinate triples representing the corners of the prism, 
and 3) use apply along with a specialized function for 
computing the volume of prisms. However, let us assume that 
we do not have such a function available. We can still 
compute the volume using the fact that our grid is a cross 
product of two simpler grids and not just an unstructured 
assemblage of prisms. (Along with the assumption that the 
(x,y,z) values refer to a Cartesian coordinate frame.) 

Figure 10 illustrates the technique. We use affix to move 
the data values from the nodes to the 2-cells and 1-cells on the 
horizontal and vertical grids respectively. We allow the affix 
operator to apply an aggregation function to the values after 
they are assigned. In this case, we compute the area of the 
triangles and the length of the line segments. 

Next, we compute the cross product of these gridfields, 
producing a gridfield that returns pairs, area,length  for 

each prism. (Refer to the definition of the cross product of 
gridfield.) We then merge the new gridfield with gfPlume to 
remove the prisms not in the plume. Finally, we can multiply 
length by area using the apply operator to compute the 
volume of each 3-cell, then sum those up with the unify 
operator. 

With these examples, we hope to demonstrate the flexi-
bility and simplicity of designing data products using our 
framework. There was no discussion of how to iterate over 
particular data structures, but we were precise enough to 
specify the data product completely. Note also how we 
re-used recipes: gfPlume appears in both Figure 9 and Figure 
10. Since the same data products are often generated for each 
run of the simulation, we envision the entire data product suite 
being expressed and browsed as one large network of 
operators. Such a network admits global reasoning, something 
very difficult when the data products are simply unrelated 
scripts and programs. 

Another aspect of these examples we wish to point out is 
our use of operator tree diagrams. These diagrams are 
common in database query processing literature, and are very 
helpful when reasoning about complex manipulations. 

5. Analysis 

One’s ability to reason about expressions in a language is 
a function of the number of operators available and 
complexity of the operators themselves. Reasoning about 
VTK and DX programs is complicated by the hundreds of 
different operations and their interdependent semantics. We 
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Figure 9.  Recipes to compute (a) the valid (“wet”) portion of the CORIE grid, (b) the maximum salinity over 
depth, and (c) the plume portion of the grid. 
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have attempted to provide a language that more naturally 
supports reasoning about correctness and efficiency. We use 
four fundamental operators to express a wide range of data 
products. We can also model details of the grids that other 
approaches do not capture, such as arbitrary dimension, 
shared topology, and implicit containment relationships. Our 
operators also have reasonably intuitive semantics, though the 
complexity of the problem space does infect some definitions. 
Together, these language properties allow us to perform some 
reasoning tasks that are difficult with large, cumbersome 
libraries of highly-specialized algorithms. To illustrate the 
kind of reasoning tasks supported by the language, we 
consider the execution and optimization of a portion of the 
plume recipe in Figure 9. 

 

Figure 10. Computing the plume volume using the 
cross product operator. 
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Consider Figure 11, a diagram based on a portion of the 
plume computation in the last section. The boxes represent 
gridfields over the full CORIE grid with salinity and geometry 
information.  The ovals are operators; m is a merge operator, 
and r is a restrict operator (with r(X) denoting a predicate 
over the grid X). Figure 11b is a recipe fragment directly taken 
from Figure 9c. The other figures are equivalent recipes 
generated by applying an algebraic identity, namely that 
merge and restrict commute. 

Readers versed in relational query processing might be 
tempted to guess that Figure 11b is the best choice for 

evaluation. The restrict operator appears similar to a rela-
tional select, and the merge operator appears similar to a 
relational join. A common relational database optimization 
technique is to “push selects through joins,” to reduce the size 
of the inputs to the join. However, consider the fact that we 
know that the two base gridfields are defined over the same 
grid. If the grids S and X in Figure 11are equivalent, then the 
merge operator does not need to do any work to compute 
their intersection. Treating the merge operator as a join is not 
appropriate in this case. If we place the restrict operators 
after the merge operator and combine them (Figure 11a), we 
might avoid an extra traversal of the grid S = X. 
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Figure 11.  Three equivalent recipes.  
 
Now we will look more closely at how we might evaluate 

the restrict operators. One option is to bring the entire dataset 
into memory, compute the restriction, and then pass the 
reduced grid and its data on to the next operator. Another 
option is to bring the grid into memory one cell at a time, 
retrieve the data value associated with that cell, and evaluate 
the predicate on the data value. If the value satisfies the 
predicate, then its cell and value are passed on to the next 
operator.  We refer to the latter technique as pipelining, and 
note that it is a common technique in database query 
evaluation. 

Since we are computing plume volume, we no longer 
need the geometry data once we have restricted the grid to the 
ocean portion. After this operator, we can remove the 
geometry data from memory, admitting a possible perform-
ance boost. In our language, we would accomplish this task 
using a project operator. If we do project out the unneeded 
data, we avoid handling both the salinity data and the 
geometry data in memory at the same time. We also do not 
sacrifice the simple, constant-time evaluation of merge. 
Although the grids are not equal, the ocean grid is guaranteed 
to be a subgrid of the full salinity grid. The merge operator 
can just replace the full grid with the reduced grid, which 
amounts to reducing the domain of the salinity function. So, it 
is plausible that Figure 11c is the best choice. 

This example demonstrates the kind of reasoning one can 
do when only a few operators need be considered. We used 
the type information, the equivalence of grids, and some 
consideration of the size of the grids. Attempting to do this 
kind of analysis in the context of an entire software library 
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would be difficult. 
A prerequisite to the kind of analysis we applied in this 

example is the ability to trace the propagation of data 
properties through an expression. This task amounts to tracing 
the property inductively through each operator. Table 1 shows 
two properties, grid and size, of the output of each operator in 
the language. 

Estimating the size of intermediate results is helpful 
when considering which of several equivalent recipes will re-
quire the least amount of work. We estimate the size of a 
gridfield as the number of domain elements its grid contains, 
multiplied by the arity of the tuple in the function's type. If a 
gridfield returns a tuple of three values, such as x,y,z , the 
arity of the tuple is simply three. In general, the arity of a 
tuple type is just the number of elements in the sequence.  
The arity of other primitive types is one. This estimate of size 
is somewhat simplistic, but it does provide an indication of 
which operators in a recipe will do the most work. 

 
6. Related Work 

Related work is found in the visualization community, 
database community, and in the projects developing special-
ized scientific data management systems. 

Data Models. Many scientific data models, especially 
for visualization, have been proposed over the last decade and 
a half. Butler and Pendley applied fiber bundle structures 
found in mathematics and physics to the representation of 
scientific data to support visualization (Butler et al., 1989; 
Butler et al., 1991; Haber et al., 1991; Treinish, 1999). Fiber 
bundles are very general topological structures capable of 
modeling many diverse classes of objects such as simple 
functions, vector fields, geometric shapes such as tori, and 
visualization operations. 

Fiber bundles showed great promise in their generality 
and support for formal reasoning. However, limitations to 
their direct use for scientific data modeling appeared. First, 
fiber bundles were developed to model continuous fields 
(manifolds), and do not address the discrete nature of 

computational grids (Moran, 2001). Second, much of the 
expressive power of fiber bundles is derived from 
complexities that most scientific grids do not exhibit. Most 
scientific grids are cast as “trivial” fiber bundles – simple 
Cartesian cross products – that do not make use of the full 
fiber bundle machinery. 

Scientific Data Management Systems. Scientific data 
manipulation has also been studied in the context of data 
management. Some systems do not attempt to model the 
contents of datasets, but just provide support for querying the 
files and programs that produce them (Frew and Bose, 2001; 
Foster et al., 2002; Wolniewicz, 1993). Metadata attached to 
programs allows tracking of data provenance – the 
information about how the data was produced. Users of the 
Chimera system (Foster et al., 2002) can register their 
programs and inputs and allow Chimera to manage execution. 
This facility gives rise to a notion of virtual data that can be 
queried before it has been derived. 

Our work differs in two ways. First, these systems model 
datasets and manipulations coarsely as indivisible files and 
codes; we model the contents of the datasets and the patterns 
of manipulations over them. Systems that rely on user-defined 
programs are vulnerable to data dependence problems and do 
not help ease the programming burden. Second, our work in 
this paper does not tackle scientific data management as a 
whole, though our project includes data management in its 
scope and vision. 

Scientific Visualization Systems. There also have been 
efforts to develop combined scientific data management and 
visualization systems. The Active Data Repository (ADR) 
(Kurc et al., 2001) optimizes storage and retrieval of very 
large multidimensional datasets, including gridded datasets. 
Queries over the data involve three transformations related to 
our operators: selecting a subregion, mapping one grid onto 
another, and processing the results. ADR is highly customized 
for particular domains. New C++ classes are developed for 
each application. 

Our work aims to formalize intuitions about grid map-
pings, grid selections, as well as several other operations 
frequently encountered in scientific applications. We also 
advocate a declarative approach that identifies the 
commonalities across scientific data applications, rather than 

 

Table 1. Output properties of core operators 

Operator Expression Output Grid Output Size 

bind bind(G,k,f) G | | ( )kG arity f  

merge merge[Ai
f, Bj

g] BA ∩  ))((|| farityBA kk ∩  
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j
f

i BA ⊗  BA ⊗  
))()((|||| garityfarityBA ji +

 
restrict restrict(p)[ Ak

g] depends on predicate less than | |kA  

aggregate aggregate(T, k, m, f)[Aj
g] T ))((|| garityTk  
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specializing low-level code on a per-application basis. 
Arrays Types for Databases. The database community 

has investigated query language extensions supporting fast 
collection types, often citing scientific data processing as a 
motivation (Marathe and Salem, 1997; Libkin et al., 1996; 
Fegaras and Maier, 1995). However, the ubiquity of arrays in 
the scientific domain is not necessarily evidence that arrays 
constitute an appropriate data model for scientific analysis, 
but rather that more specialized data models have not been 
developed. Further, direct use of arrays and other low-level 
data structures lead to data dependence problems. Declarative 
data languages have provided a solution to data dependence 
by avoiding such structures. Rather than make one’s data 
language more procedural, we recommend making one’s 
application language more declarative. 

Geographic Information Systems. Superficially, geo-
graphic information systems (GIS) (Eastman, 1997; Dewitt et 
al., 1994) research seems closely related to our work. 
Applications in both areas involve representations of data 
objects physically positioned in some space of values. 
Applications in both areas frequently make use of range 
queries, where intervals in space are used to locate relevant 
objects. 

However, GIS are designed for a particular class of data 
objects that does not include gridded datasets. Spatial 
databases model and manage data objects that have a spatial 
extent, while our work is to model spatial extents over which 
data has been defined. In our domain, gridded datasets are 
manipulated as a whole; finding objects located in space is a 
secondary concern. 

Raster GIS (Câmara, 2000; Widmann and Bauman, 1997; 
Eastman, 1997) do manipulate grid structures, but they use 
primarily structured grids. Grids are not considered first-class 
and are difficult to reason about independently of the data. 

Data models based on simplicial complexes, have been 
proposed for GIS (Jackson, Egenhofer, and Frank, 1989) to 
model a domain related to ours – datasets embodying 
solutions to numerical partial differential equations (Berti, 
2000). Simplicial complexes provide a formal topological 
definition of grids. Our model allows cells to be other 
polytopes besides simplices, but also sacrifices the mature 
theory of simplicial complexes. 

7. Conclusions and Future Work 

Our motivation for formalizing grid manipulations is de-
rived from our more general interest in scientific data 
management. We have observed that there are two funda-
mental tasks in scientific data processing: one to retrieve 
datasets of interest and one to analyze those datasets, pro-
ducing data products. The first task requires that datasets be 
identified using metadata such as dates, times, user names, 
simulation parameters, and annotations.  These kinds of data 
are relatively well understood and are naturally modeled using 
relational or object-relational systems. Datasets can then be 
retrieved using the available query languages. The second task, 
however, generally requires the use of highly specialized 

applications or customized code. Our eventual goal is to 
integrate the two tasks into one declarative language. In this 
paper, we described our research into a language for the 
second task. Our conclusion is that such a language can be 
defined, and that only five core operators are necessary to 
express all of the existing CORIE data products. 

We have also used operator expressions as a common 
framework for comparing the capabilities of different 
software systems. For example, we can describe precisely the 
difference between how VTK and DX implement a restrict 
operation. VTK provides a “Threshold” object that behaves 
much as we have described restrict. DX, however, 
recommends marking restricted cells as “invalid” and then 
filtering them out only in the final rendering. DX’s construct 
is therefore a straightforward use of the aggregate operator. 
The differences between such routines become clear when 
cast as expressions in our language. 

The language has also shown promise as an intermediate 
specification language between English descriptions of data 
products and programming language implementations. Data 
products are usually first expressed in English for ease of 
discussion. However, these descriptions are much generally 
much too ambiguous to use to generate an executable program. 
Correct implementations are necessarily precise, but the 
simple conceptual description of the data product is lost in 
obtuse code. Our “recipes” are simple enough to maintain 
clarity, but precise enough to reason about correctness, 
efficiency, and their relationship to the rest of the data product 
suite.  Figure 12 illustrates this idea. 

 

English Recipes Code

simple, but 
ambiguous simple and precise 

precise, but 
obfuscated 

 
Figure 12.  Means of describing data products. 
 

Finally, we list several specific features of our language 
that distinguish it from existing tools. 
z Grids are first-class structures (see Section 1), allowing 

grids to be shared between datasets and manipulated 
independently. 

z Grid geometry is modeled as data, simplifying the model 
and allowing grids to be manipulated using purely 
topological operators such as union, intersection, and 
cross product. 

z The cross product operator is used to express complex 
grids simply and precisely. 

z Grids of arbitrary dimension can be defined and ma-
nipulated. 

z Functions abstractions allow independence from 
choosing a particular data representation. 

z Data can be associated with k-cells of any dimension, 
avoiding ambiguities arising from associating, say, length 
data with nodes. 
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Although specialized processing is necessary for most 
scientific applications, our operators clearly separate custom 
code from core operator functionality. Specifically, 
assignment and aggregation functions capture all customiza-
tions we have required thus far, save for the predicates passed 
to restrict. 

Equivalent recipes can be generated using algebraic 
identities and compared by analyzing the types, grids, and 
sizes of intermediate gridfields. 

There are limitations to the language. Recursive ma-
nipulations such as a streamline calculation over vector fields 
cannot be expressed easily. We are investigating a fixpoint 
operator to express such manipulations. Also, we have not yet 
integrated dataset manipulations with more traditional 
metadata queries. 

The language has proved useful for reasoning about the 
computations in the CORIE system. Our ongoing work is to 
provide an implementation of the language. The planned 
implementation will involve two technologies: a functional 
programming language for working with the abstract 
operators, and a fast low-level language for the physical 
operators. VTK is an appropriate starting point for the 
physical layer; the algorithms are state of the art, and the 
library is robust and well maintained. However, as discussed 
in Section 1, the library will need to be extended with several 
custom operations. For the logical layer, we plan to use the 
functional language Haskell (Peyton-Jones et al., 1999) to 
manipulate abstract grids and gridfields. 
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