

 23

03JEI0000
1726-2135/1684-8799

 2003 ISEIS
www.iseis.org/jei.htm

Journal of Environmental Informatics

A Language for Spatial Data Manipulation

B. Howe1*, D. Maier1, A. Baptista2

1Department of Computer Science and Engineering, OGI School of Science and Engineering at Oregon Health and Science
University, 20000 NW Walker Road, Beaverton, OR 97006

 2Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering at Oregon Health and Science University,
20000 NW Walker Road, Beaverton, OR 97006

ABSTRACT. Environmental Observation and Forecasting Systems (EOFS) create new opportunities and challenges for generation
and use of environmental data products. The number and diversity of these data products, however, has been artificially constrained by
the lack of a simple descriptive language for expressing them. Data products that can be described simply in English take pages of
obtuse scripts to generate. The scripts obfuscate the original intent of the data product, making it difficult for users and scientists to
understand the overall product catalog. The problem is exacerbated by the evolution of modern EOFS into data product “factories”
subject to reliability requirements and daily production schedules. New products must be developed and assimilated into the product
suite as quickly as they are imagined. Reliability must be maintained despite changing hardware, changing software, changing file
formats, and changing staff. We present a language for naturally expressing data product recipes over structured and unstructured
computational grids of arbitrary dimension. Informed by relational database theory, we have defined a simple data model and a handful
of operators that can be composed to express complex visualizations, plots, and transformations of gridded datasets. The language
provides a medium for design, discussion, and development of new data products without commitment to particular data structures or
algorithms. In this paper, we provide a formal description of the language and several examples of its use to express and analyze data
products. The context of our research is the CORIE system, an EOFS supporting the study of the Columbia River Estuary.

Keywords: Columbia River, database, data model, data product, estuarine, grid, visualization

1. Introduction

Scientific data processing consists of two distinct steps:
dataset retrieval and dataset analysis. These tasks are not
difficult when the amount of data is modest: Datasets can be
retrieved by browsing the filesystem, analysis routines can be
invoked manually, and the resulting data products can be
returned to the filesystem and organized in an ad hoc manner.
However, as the amount of data grows, a scalable and
comprehensive set of policies, embodied by some form of
data management system, is required. Existing database
technology supports dataset retrieval, but dataset analysis
must be performed using specialized programs. These
specialized programs, however, are generally designed for
analyzing one dataset at a time, and are difficult to incorporate
into large-scale data management systems. Scientists need to
apply the same program to hundreds or thousands of datasets
simultaneously, compose programs in non-trivial ways, and
author new programs at a rapid rate. The focus of our work
has been to understand the fundamental manipulations per-
formed by such programs, and propose a simple language that
can express such manipulations.

Scientific datasets are often characterized by the topo-
logical structure, or grid, over which they are defined. For
example, a timeseries is defined over a 1-dimensional grid,

 * Corresponding author: bill@cse.ogi.edu

while the solution to a partial differential equation using a
finite element method might be defined over a 3-dimensional
grid. Grids therefore seem an appropriate concept on which to
base a scientific data model. Indeed, others have observed
that grid patterns appear frequently in a wide range of
domains (Berti, 2000; Moran, 2001; Kurc et al., 2001;
Schroeder et al., 2000; OpenDX, 2002; Treinish, 1996; Haber
et al., 1991). What has not been previously observed is the
existence of simple patterns in grid manipulations; that much
of the extensive library code provided with scientific
visualization systems, for example, can be cast in terms of just
a few fundamental operators?

Our context for studying these gridded datasets is CORIE,
an Environmental Observation and Forecasting System
(Baptista et al., 2000; Wilkin et al., 1999) designed to support
scientific and industrial interests in the Columbia River
Estuary. The CORIE system simulates and measures the
physical properties of the estuary, generating 5GB of data and
over 100 data products daily (with 1000s of intermediate files),
including visualizations, aggregated results, and derived
datasets. A standard product suite is generated daily. The tasks
required to generate the product suite are organized into a data
product pipeline. Individual data products are used for varied
purposes including salmon endangerment studies,
environmental impact assessments, and as inputs to
oceanographic simulations. Figure 1 shows the CORIE grid
domain for solving the 3-dimensional transport equations

B. Howe et al. / Journal of Environmental Informatics

 24

using an Eulerian-Lagrangian finite element method. The
horizontal grid is parallel to the water’s surface extends from
the Baja peninsula up to Alaska, though the Columbia River
Estuary and the ocean waters around the mouth of the river
have the greatest concentration of grid elements. Using a
vertical grid to partition the depth of the river, a
3-dimensional grid can be generated. Time steps add a fourth
dimension.

Longview
Upstream limit

Bonneville
 Dam

 Willamette
 Falls

Figure 1. The CORIE grid, extending from the Baja peninsula
to Alaska, to model the influence of the Columbia River.

Data defined over this grid include the physical charac-
teristics of the flowing water: velocity, temperature, salinity,
elevation. Three classes of data products in the product suite
are contour plots projected onto the horizontal grid, contour
plots projected onto some vertical grid, and timeseries plots.
Horizontal contour plots take a “slice” through the grid in the
xy plane, perhaps aggregating over the vertical dimension.
Figure 2a shows a horizontal slice at a depth of three meters.
Vertical contour plots such the one in Figure 2b also “slice”
through the grid, but in the vertical direction. In this case, the
unstructured horizontal grid in Figure 1 does not appear in the
output; rather a new grid is formed from user-selected points
in the xy plane extended in the vertical dimension. Figure 2b
was taken from points along a channel near the mouth of the
river. Timeseries data products are standard 2-dimensional
graphs with one or more variables plotted against time.

1.1. Challenges

The existing CORIE data product pipeline consists of C
programs controlled by Perl scripts. A fixed set of data
products can be reliably generated using this approach, but
new data products are difficult to define and incorporate into
the product suite. In fact, design, construction, and
assimilation of new data products are currently intractable for
those not intimately familiar with CORIE file formats and
processing environments; these tasks are certainly beyond the
reach of non-technical consumers of CORIE data. Our work
takes steps toward lowering development time for both expert
users and non-expert users.

 a)

b) 0
 -5
 -10
 -15
 -20
 -25
 -30

Z
(m

)

b)

Figure 2. Two data products in the CORIE system: (a)
Horizontal slice showing salinity in the estuary; (b) Vertical
slice along a channel of the same data.

Since many data products are visualizations, our first ap-

proach was to investigate mature visualization libraries to
replace or augment our custom codes. IBM's Data Explorer
(DX) (OpenDX, 2002) and the Visualization Toolkit (VTK)
(Schroeder et al., 1996) are free software libraries
implementing efficient visualization algorithms in an
organized library. We gave these libraries most of our
attention since they are freely available and widely used.
However, other tools such as Geographic Information
Systems (GIS) and general scientific data management
platforms are relevant and are discussed in Section 6.

DX and VTK support a rich set of visualization opera-
tions, but their use did not significantly lower development
time. New data products were still difficult to define and
assimilate. Minor changes in the conceptual data product
specification required major changes to the code. Data
products that were easy to describe in English still required
rather obtuse programming constructs. Even experienced
users of VTK had trouble applying their knowledge to the
CORIE datasets. Prior to implementation, we described data
products in English using natural concepts such as a
“horizontal or vertical slice” and the “maximum over depth”.
Unfortunately, these concepts did not always have analogous
operations in the library. We significant time translating our
concepts into the “language” of VTK and DX. Specifically,
the following concepts proved useful but were poorly
supported by both libraries:
z Cross Product Grids. We found that the notion of cross

product is able to express many common grid ma-
nipulations: constructing higher dimensional grids,
repeating data values, and describing the relationship
between two grids.

z Shared Grids. Many datasets tend to be defined over the
same grid, with each dataset corresponding to a variation
in simulation parameters, date, code version, algorithms,
hardware, or other variables.

z Intersecting Grids. Intersecting grids are a generalization
of shared grids; we noticed that even if two grids were
not precisely equivalent, one might contain another. This

B. Howe et al. / Journal of Environmental Informatics

 25

situation arises, for example, when cutting away a
portion of a grid based on data values. The smaller grid is
subgrid of the original, full-size grid. This relationship
can be exploited when reducing one dataset based on a
predicate defined on another. For example, the plume of
freshwater from the river that jets into the ocean is an
important feature of an estuarine system. The plume is
defined by choosing a salinity threshold below that of
seawater, 34 psu. If we wish to visualize the temperature
of the plume, we must identify the relevant values in a
temperature dataset based on a predicate defined over a
salinity dataset. This task is easier if one grid is known to
be a subgrid of another.

z Combinatorial algorithms. Berti observes that combi-
natorial algorithms for grid manipulation are superior to
geometric algorithms (Berti, 2000). For example, finding
the intersection of two subgrids derived from a common
supergrid can be implemented efficiently by using just
the identifiers for the grid elements (say, indices into an
array).

z Aggregation. Many grid manipulations can be cast as 1) a
mapping of one grid onto another, and 2) the aggregation
of the mapped values. Both DX and VTK offer extensive
libraries for performing common instances of this
manipulation, but neither provides a general aggregation
abstraction.

z Time. We found it useful to reason about the CORIE grid
in four dimensions, thereby avoiding special machinery
for handling time.

z Unstructured Grids. Structured grids allow cell
neighbors to be computed rather than looked up. Conse-
quently, manipulating structured grids is easier than
manipulating unstructured grids, and the limited
availability of algorithms over unstructured grids reflects
this difference. Since CORIE involves both structured
grids (the time dimension) and unstructured grids (the
horizontal dimensions), we found it useful to reason
about structured and unstructured grids uniformly.

1.2. Requirements
The concepts we use to reason about data products oper-

ate at a higher level of abstraction than do the library
functions. That software provides a variety of specialized
functions for processing particular datasets; we found that a
few general concepts could be reused across a variety of
datasets. Our experiences lead us to state the following
requirements for scientific data manipulation software.

Grids should be first-class. Existing systems consider
the grid a component of a dataset, rather than as an
independent entity. Grids shared across multiple datasets are
difficult to model with this scheme; the grid information must
be copied for each. In addition, the grid information is often
known before the dataset is available. If grids are first class,
some computations can be performed before the dataset is
available, improving runtime performance.

Equivalences should be obvious. There are different

ways to express data products using different software tools,
and even different ways to express data products within a
single software tool. The intricacies of a complex software
library make it difficult to find and exploit these equivalences.
For example, two data products might both operate over the
same region around the mouth of the Columbia River. The
computation to produce this region should be shared to avoid
redundant work. Systems oriented toward processing only
individual datasets do not provide an environment conducive
to sharing intermediate results.

The first recommendation suggests the need for a new
data model, and the second recommendation suggests the
need for a simpler set of operators with which to manipulate
the data model. We have found that the methodology used to
develop relational database systems provide guidance in
designing these tools. We do not prescribe applying relational
database technology itself to the problem; rather that the
original motivations for developing relational systems are
analogous to the motivations we have described.

1.3. Relational Database Methodology

The relational model was developed based on the obser-
vation that data was frequently expressed as tables. A table
(relation) is a set of tuples, and each tuple in a table has the
same number of attributes. Comma-delimited files,
spreadsheets, and lists of arrays all might express tabular data.
Although the table constructs themselves were ubiquitous,
their representations varied widely. Some systems used
physical pointers to memory locations to relate data in
different tables. Other systems used tree structures to model
related tables. Application programs de-referenced pointers or
navigated the tree structures to gather results. These systems
proved to be brittle with respect to changing data
characteristics. Whenever the database was reorganized to
accommodate new data or new applications, existing
applications would fail.

Codd is credited with the observation that the problem
was not a fundamental property of tabular data, but rather a
consequence of implementation design choices (Codd, 1970,
1990). He coined the term data dependence to describe the
problem. Data dependent software is too tightly coupled to a
particular set of data characteristics, such as representation,
format, or storage location.

To solve the problem, Codd advocated a relational alge-
bra that facilitated a separation of logical and physical
concerns. The user manipulates only the logical data model,
while the system manipulates the more complex physical data
representation. This approach delivers several benefits:
z Data Independence. Queries written at the logical level

can tolerate changes to database size, location, format, or
available resources. Contrast this situation with
customized programs that reference file names, must
parse file layout, or assume a particular amount of
available memory.

z Expressiveness. Queries are expressed over a simple data
model rather than the necessarily complex data rep-
resentation. Only a few operators are necessary to ex-

B. Howe et al. / Journal of Environmental Informatics

 26

press a provably complete set of data mani- pulations.
z Cost-Based Optimization. Relational optimizers can

generate a set of physical query plans, each of which
faithfully implements a given logical query. The opti-
mizer has two primary axes to explore in plan generation.
(1) The optimizer generates equivalent plans by invoking
algebraic identities admitted by the formal data model. (2)
The optimizer can select from a range of
implementations for each operator in the logical query,
thereby generating additional equivalent physical plans.
The complexity of these tasks is hidden inside the
database software; the user need only declare the results
that he or she wants. Each of the equivalent physical
plans can be assigned an estimated cost based on the
characteristics of the data, such as size, distribution of
values, and the availability of indices. The plan with the
lowest estimated cost is finally executed. Systems based
on the relational model emerged and began to exhibit the
benefits described above. Other database paradigms were
quickly outmoded.
Of course, grids are not exactly tables, and operations

over gridded datasets are not naturally expressed in the
relational algebra. In particular, grids carry much more
information than tables, and scientists need to perform
complex calculations instead of simple queries. We can learn
something from Codd’s approach nonetheless. By studying
existing systems designed to manipulate business data, he was
able to extract a handful of operators able to express a
complete set of logical manipulations over a logical data
model. In this paper, we take a similar approach. We have
defined a data model and manipulation language that is simple
enough to reason about formally, but rich enough to express
real data products.

The data model consists of grids for modeling the topol-
ogy of a partitioned domain and gridfields for modeling the
data associated with that domain. A grid is constructed from
discrete cells grouped into sets representing different
dimensions. That is, a grid consists of a set of nodes, a set of
edges, a set of faces, and so on. A gridfield associates data
values to each cell of a particular dimension using a function.
Function abstractions allow us to reason about data without
concern for file formats, location, size, or other
representational concerns. If a function can be written that
maps grid cells to data values, a gridfield can model the
dataset. To manipulate gridfields, one constructs a “recipe”
from a sequence of operators. Together these operators are
rich enough to express the data product suite of the CORIE
system, and appear to be general enough to express many
other data products as well.

In the next section, we develop the data model and basic
grid operations. In Section 0, we introduce the operators that
form the core language and give simple examples of their use.
In Sections 0 and 0, we use the language to develop and
analyze examples of real data products. In Section 0, we
discuss related work in scientific data management and
modeling. The last section includes discussion of future work
and conclusions we have drawn.

2. Data Model

Existing data models for gridded datasets consist of two
components:
z A representation of the topology and geometry
z A representation of the data defined over the topology

Most systems and practitioners use the word geometry to
refer to the first component, few use the word topology. It is
important to realize that the two concepts are distinct. The
study of topology arose from the observation that some
problems depend only on “connection” properties (such as
adjacency and containment) and not the geometric properties
(such as shape or size). For example, Figure 3 shows three
geometric realizations of the same topological grid. Topology
involves only the properties of neighborhoods of points and
not absolute positions in a metric space. Our data model
makes the same distinction, and does not require absolute
positions in space nor time. This approach reduces the
complexity of the data model; geometric data require no
special treatment. We view geometric data as just that – data.
We claim that grid topology is the distinguishing feature of
scientific data, and the only feature requiring specialized
solutions. All other data can be modeled as functions over the
topological elements.

 (a) (c) (b)

Figure 3. Three geometric realizations of one grid.

2.1. Grids
In this section we present the data model over which we

will define our language. The fundamental unit of ma-
nipulation is the grid. Intuitively, grids are constructed from
nodes and connections among the nodes. A sequence of nodes
declared to be connected form a cell. A cell is interpreted as
an element of some particular dimension. We allow cells of
combination of dimensions to be grouped together as a grid.
There is a significant flexibility with this construction. We can
distinguish between grids made up of just triangles and nodes,
versus grids made up of triangles, their edges, and nodes. In
fact, grids may be constructed from any combination of nodes,
edges, faces, etc. We have chosen simplicity and flexibility at
the expense of allowing some odd grids.

Definition A 0-cell or node is a named but otherwise
featureless entity.

The naming scheme for nodes depends on the imple-
mentation. Array-based implementations may use integer
indices to refer to nodes, while an object oriented implemen-
tation might use object identifiers.

B. Howe et al. / Journal of Environmental Informatics

 27

Definition A k-dimensional cell, denoted k-cell (Berti,
2000) or just cell, is a sequence of 0-cells plus an associated
positive integer dimension k. The dimension of the k-cell is
constrained, but not defined, by the number of nodes used to
represent it. Specifically, if n is the number of nodes in the
sequence, then n = 1 implies k = 0, and n > 1 implies k < n. To
obtain the nodes that define a k-cell c as a set rather than a
sequence, we write V(c).

Intuitively, a 1-cell is a line segment, a 2-cell is a polygon,
a 3-cell is a polyhedron, and so on. The number of nodes in a
k-cell is not fully specified in order to allow non-simplicial
polytopes such as squares and prisms. (A simplex is the
polytope of a given dimension requiring the fewest number of
nodes. The 2-dimensional simplex is the triangle. The
3-dimensional simplex is the tetrahedron.) To interpret a
sequence of nodes as a particular shape, implementations
require that a cell type be assigned to each sequence. In this
paper, we will assume that cell types are determined and
maintained at the physical layer without explicit guidance
from the data model.

Definition A grid G is a sequence [G0, G1, …] where Gk
is a set of k-cells. A grid must be well formed: There can be no
k-cells in Gk that reference a node that is not in G0. The
dimension of a grid is the maximum k of all cells in the grid.

In the diagram at the left of Figure 4, the 2-dimensional
grid A has three 0-cells, three 1-cells, and one 2-cell. The
1-dimensional grid B has two 0-cells and one 1-cell. Note that
a grid consisting of only nodes is 0-dimensional.

Intuitively, a grid partitions a space into cells of various
dimensions. Note that this definition is purely combinatorial;
we have not described the space in which the grid is
embedded. More precisely, we have not specified a geometric
realization for the cells. Geometry in our model is captured as
a gridfield, which we will describe in the next section. One
final definition gives the relationship between k-cells that
share nodes. The notion of incidence captures the intuition
that we should be able to retrieve the cells that “touch” a
given cell.

Definition A cell c is incident to another cell e, written
c ep , if all of the nodes referenced by c are also referenced
by e. That is, c ep if V(c) V(e)⊆ .

Equivalence and containment relationships between two
grids can be derived from the definition of incidence. To
maintain such a relationship, the implementation must
establish a 1-1 correspondence between the nodes of the two
grids, and then inspect the induced incidence relationships
between the cells of other dimensions. Arbitrary grids will not
often be tested for equivalence or containment, however. We
have found that many grids can be derived from just a small
set of base grids. Keeping track of the relationships between
grids amounts to keeping track of the derivations performed
on this small base set. Therefore, equivalence and
containment can be inferred by a comparison of derivations
rather than an expensive cell-by-cell comparison of grids.
Reasoning about derivations in this manner is very difficult
without a simple data model and simple operations.

Before we describe how to associate data values with a
grid to create a gridfield, we introduce operators for
manipulating grids themselves.

2.2. Cross Product
The cross product of two grids generates a higher dimen-

sional grid based on cross products of their constituent sets of
cells.

Consider two zero-dimensional grids, A and B, each
containing a single node a and b respectively. Their cross
product, A B⊗ , would be a new grid also with a single node,
which we refer to as ab. If B consisted of two nodes, b1 and b2,
then A B⊗ would consist of two nodes, ab1 and ab2. If B
additionally had a 1-cell (b1, b2) then the cross product would
have the nodes ab1 and ab2, and one 1-cell connecting them,
written (ab1, ab2).

A less trivial example is shown at the left of Figure 4.
Intuitively, we are generating a prism from a triangle and a
line segment. In our notation, we have

B´
A A B 1

 2

 1

 2

a

b
c

a

b
c

a1

b1

c1 a1

b1

c1

a2 a2

b2

c1 c2

A G B G´ A´ B´
G=A⊗B G´=A⊗B´

Figure 4. Two examples of the cross product operator.

B. Howe et al. / Journal of Environmental Informatics

 28

{ }
{ } { },

, , ,{(,),(,),(,)},{(, ,)}

1,2 (1,2)

A a b c a b b c c a a b c

B

  
  

=

=
 (1)

The cross product operation is denoted

G A B= ⊗ (2)

where

0 0 0

1 1 0 0 1

2 2 0 1 1

3 2 1

G A B
G A B A B
G A B A B
G A B

= ×
= × ∪ ×
= × ∪ ×
= ×

Evaluating these expressions, we obtain

0 1 2 3[, , ,]G G G G G=

0 { 1, 1, 1, 2, 2, 2}G a b c a b c=

1 {(1, 1),(1, 1),(1, 1),(2, 2),(2, 2),(2, 2)}
{(1, 2),(1, 2),(1, 2)}

G a b b c c a a b b c c a
 a a b b c c

=
∪

2 {(1, 1, 1),(2, 2, 2)}
{(1, 1, 2, 2),(1, 1, 2, 2),(1, 1, 2, 2)}

G a b c a b c
 a b b a b c c b c a a c

=
∪

3 {(1, 1, 1, 2, 2, 2)}G a b c a b c= (3)

The 3-cell in the new grid is a prism, resulting from the

triangle in A2 sweeping out a solid in the third dimension. The
2-cells in the new grid might be triangles or parallelograms,
depending on how they were derived. The edges in A1 and the
edges in B1 together form parallelograms in G2, while the
triangles in A2 and the nodes in B0 form triangles in G2.

In general,
G A B= ⊗ is defined as

0 1 0 1 0 1[, ,...,] [, ,...,] [, ,...,]G G G A A A B B Bγ α β= ⊗ (4)

where

0

i

i j i j
j

G A B −
=

= ×U

The product operator introduces a kind of “regularity"

(Haber et al., 1991) even if the two component grids are
irregular. Consider an extension of the example at the left of
Figure 4, in which a 2-dimensional irregular grid in the xy
plane is repeated in a third dimension z. The triangles in the xy
plane form prisms as they sweep out a space in z. The edges
of the triangles will sweep out rectangles. The nodes will
sweep out lines. Now we have a true 3-dimensional grid that

is usually classified as “irregular" in visualization applica-
tions. But it is important to note that at every z coordinate, the
xy grid is the same. We can sometimes exploit this knowledge
about how the grid was constructed to map values from one
grid to another efficiently.

The cross-product operation is more flexible than might
be immediately apparent. The operation at the right of Figure
4 illustrates the cross product of A and a 0-dimensional grid B'.
A similar grid arises in the CORIE domain, since the solutions
to the governing differential equations are not actually solved
in three dimensions. Since the river dynamics are dominated
by lateral flow, the equations are solved in two dimensions,
but at each depth in the vertical grid. Data values associated
with the z dimension cannot be unambiguously assigned to the
prisms in the new grid. For a grid of n nodes in the z dimen-
sion, there are n triangles, but n – 1 prisms. Our model
exposes this potential ambiguity; other models force an
assumption about how the data values will be assigned.

2.3. Union and Intersection

The union of two grids can be used to model overlapping
or piecemeal grids. For example, in the context of our
estuarine simulation, atmospheric condi- tions are inputs
(forcings) to the domain of the solution. The data for these
forcings are a combination of overlapping grid functions
provided by two universities’ atmospheric models. Each is
defined on a separate grid. The union operation allows
reasoning about these two grids as one. The union operator
might also be used when partitioning and recombining grids
in a parallel environment, or to bring the interior of a grid (say,
sets of nodes and triangles) together with a representation of
its boundary (a set of edges).

Formally,
G A B= ∪ is defined as

0 1 0 1 0 1[, ,...,] [, ,...,] [, ,...,]G G G A A A B B Bγ α β= ∪ (5)

where

i i iG A B= ∪

The intersection operator is often used to reduce one
grid based on the k-cells in another. Frequently, intersection is
used only on grids of equal dimension, though the definition
does not enforce this limitation. We will use grid intersection
to define the merge operator over gridfields in Section 0.

BAG ∩= is defined as

0 1 0 1 0 1[, ,...,] [, ,...,] [, ,...,]G G G A A A B B Bγ α β= ∩ (6)

where

i i iG A B= ∩

2.4. GridFields

Grids express only the topology of a gridded dataset. To
express the data associated with the grid, we use a function
abstraction. A gridfield maps the k-cells for some k of a grid G

B. Howe et al. / Journal of Environmental Informatics

 29

to data values.
Definition A gridfield, written Gk

g, is a triple (G, k, g)
where g is a function from the k-cells of G to data values. The
type of a gridfield, written t[Gk

g] is the return type of the
function g.

The primitive types we will work with in this paper are
Integers, Floats, Strings, and Booleans. We will also make use
of sets and tuples.

Definition A tuple is a sequence of values of possibly
different types. The tupling function tup takes n arguments
and generates an n-tuple, unnesting if necessary. For example,
tup (, , ,) , , ,a b x y a b x y= . (Note that we use angle brackets

to enclose tuples.) In our notation, the singleton tuple x is
identical to the value x.

We adopt the database convention of accessing tuple
components by name rather than by position. This named
perspective effectively makes the order of the tuple compo-
nents irrelevant. In the functional programming community,
record structures have been proposed that use a similar
mechanism. Selector functions (Jones et al., 1999) such as
“salinity” or “velocity” are used to access the elements of a
record type rather than using positional access functions such
as “first” or “second”.

In our domain, gridfields are primarily used to model the
physical quantities being simulated. In one version of the
CORIE output data, salinity and temperature values are
defined over 2-cells at each depth of a product grid like that at
the right of Figure 4. Velocity is defined over the nodes
(0-cells) in the same grid. Water elevation is a gridfield over
the 2-cells of the horizontal two dimensional grid. In a more
recent version, the data values are associated with the nodes
of the grid rather than the 2-cells. This change had drastic
consequences: All the code in the system had to be
meticulously checked for dependence on the earlier data
format. Our model is able to capture the difference between
these two configurations very precisely, exposing affected
data products and guiding solutions.

The geometric coordinates that position a node in some
space are modeled as data too, constituting their own gridfield.
Specifically, a geometric realization of the CORIE grid is
given by a gridfield over 0-cells of type

:float, :float, :floatx y z . Geometric data can be associated
with more than just 0-cells, however. Curvilinear grids can be
represented by associating a curved interpolation function
with each 1-cell. Figure 3 shows three different realizations of
the same grid; Figure 3c shows such a curvilinear grid. Many
systems do not support this kind of geometric realization;
geometric data is associated with the nodes only (as
coordinates) and geometry for higher dimensional cells is
linearly extrapolated from the cells coordinates. The
flexibility and uniformity obtained by modeling all data as
functions is a primary strength of this model. Grids of
arbitrary dimension, with arbitrary geometry, can be modeled,
manipulated, and reasoned about just as easily as simple,
low-dimensional grids.

3. Language

In this section we present four operators over gridfields
that together can express a variety of data products. In Section
0, we will give examples from the CORIE data product suite
to provide illustrations of the language’s expressiveness. First
we give a short intuitive description of each operator.
z The bind operator associates data to a grid to construct a

gridfield.
z The merge operator combines multiple gridfields over

the intersection of their grids.
z The restrict operator changes the structure of a gridfield

by evaluating a predicate over its data.
z The aggregate operator transforms a gridfield by

mapping it onto another grid and aggregating as appro-
priate.
We envision other operators being defined as the need

arises, but these represent the core language.

3.1. Bind
The bind operator constructs a gridfield from a grid and

a function. Implementations of gridfields will not always use
a literal function. If our datasets are stored in files, a function
implementation might have to open the file, seek to the
correct position, read the value, and close the file on each call.
For efficiency, we would prefer to read in a large block of
values at a time. However, the function abstraction is
appropriate for defining our gridfields at this level of
abstraction. As long as such a function could be defined, this
model is appropriate.

Definition Let A be a grid and f be a function from Ak to
data values. Then bind(A, k, f) = Ak

f where Ak
f is a gridfield.

The definition may seem trivial since we simply form a
triple from the three arguments. However, this operator has
significance in an implementation as a constructor of
gridfields. The bind operation can encapsulate a procedure to
validate data availability, create indices, or otherwise prepare
the values for manipulation as a gridfield. In our model, bind
is just a declaration that the data values represented by the
function f match the grid given by G. Note that the same
function can be bound to different grids, as long as they share
the same set of k-cells.

3.2. Restrict
The restrict operator takes a predicate over the data val-

ues of a gridfield and filters out k-cells associated with values
that do not satisfy it. A frequent use of restrict in our
experience is to “zoom" in on a particular region by filtering
out those cells whose geometry places them outside a
bounding box. Note that since geometry is simply data in our
model, this “zoom" operation is treated identically to other
filtering operations.

The naïve semantics of restrict is to simply remove those
k-cells that do not satisfy the predicate. However, recall that
k-cells are defined using references to nodes. If referenced
nodes are removed, the grid will not be well-formed. To
enforce well-formedness, we must also remove all cells that

B. Howe et al. / Journal of Environmental Informatics

 30

reference removed nodes (Figure 5).
Definition Let Ak

f be a gridfield, where f is a function
from Ak to data values of type t. Let p be a predicate over
data values of type t. Then restrict(p)[Ak

f] returns a gridfield
Gk

f. In the case 0k > , 0 1 n, ,...,G G G G  = , where

{ | , () }k kG e e A p f e true= ∈ =o and i iG A= for all ki ≠ .
In this definition, the predicate p is used to filter out some
cells of dimension k, but all other cells are included in G.
(Note that o denotes function composition.) In the case

0=k , Gk is defined as before but we must ensure
well-formedness by removing any cells that reference deleted
nodes. That is, { | , (), () }i iG e e A v V e p f v true= ∈ ∀ ∈ =o
for all i k≠ .

3.3. Merge and Cross Product

The merge operator combines two gridfields over the
intersection of their grids. More precisely, merge computes
the intersection grid of its two arguments, and produces a
gridfield over that intersection that returns pairs of values. If
the two grids are equal, as they can frequently be in our
experience, then merge simply pairs the values from each
argument but leaves the base grid unchanged. Figure 6 shows
an illustration of this operator.

Definition Let Ak
f and Bk

g be gridfields. Then merge [Ak
f,

Bk
g] = Gk

h where ()G A B= ∩ , and () (), ()h e f e g e= for

every cell i je A B∩∈ .

Merge is related to the intersection operation over the
underlying grids. Similarly, we can lift the cross product
operator defined for grids and redefine it for gridfields.

Definition The cross product of two gridfields, written
Ai

f ⊗ Bj
g is a gridfield Gk

h where G = A ⊗ B, k = i + j, and
() (), ()h e f e g e= for e Ai∈ and j c B∈ .

The union operator can also be applied to gridfields.
However, there are some technical complexities, and we omit
the formal definition here.

3.4. Aggregate
The most expressive operator in our language is aggre-

gate. Most significant manipulations involve one or more
aggregate operators. As the name implies, aggregate is used to
combine multiple values from one gridfield into a single value
in another grid. There are two steps to the process. First, a
source gridfield's domain is mapped to the target gridfield's
domain. An assignment function takes a k-cell from the target
grid and returns a set of j-cells in the source grid. Next, all the
source cells mapped to a particular target cell are aggregated

Figure 5. Illustration of the merge operator.

27

25

24

26

27

25

24

26

Apply predicate Ensure well-formedness

27

25

24

26

21

19

Restrict (>23)

(x2,y2,z2)

(x4,y4,z4)

(x3,y3,z3) z2
z4

z3

(x2, y2)

(x4,y4) (x1,y1)

(x3,y3)

merge

 Figure 6. Illustration of the merge operator.

B. Howe et al. / Journal of Environmental Informatics

 31

using an aggregation function.
Consider a timeseries of temperature values for a par-

ticular point in the river. We partition the time dimension
using a 1-dimensional source grid S, as shown in Figure 7a.
One use of the aggregate operator is to perform a “chunking”
operation to coarsen the resolution of the grid. The
assignment function assigns each node in the target grid T a
set of n nodes, the “chunk,” in the source grid S (Figure 7b).
The aggregation function then, say, computes the arithmetic
mean of the n nodes to obtain single value (Figure 7c).

 12.1°C12.6 ° C 13.1 ° C 13.2 ° C 12.8 ° C 12.5 ° C

12.95 ° C 12.45 ° C

a)

Assign

Aggregate

b)

c)

{12.8 ° C , 12.5 ° C , 12.1°C}{12.6 ° C, 13.1 ° C, 13.2 ° C}

12.1°C12.6 ° C 13.1 ° C 13.2 ° C 12.8 ° C 12.5 ° C
a)

Assign

Aggregate

b)

c)

{12.8 ° C , 12.5 ° C , 12.1°C}{12.6 ° C, 13.1 ° C, 13.2 ° C}

Figure 7. Illustration of the aggregate operator.

Definition Let T be a grid and Sj
g be a gridfield of type a.

Let f be a function from sets of values of type a to values of
type b. That is, { }:f a b→ . Let m be a function from Tk to

sets of cells in Fj. That is, { }: k jm T S→ . Then aggregate (T,

k, m, f)[Sj
g] produces a gridfield Tk

h where h f g m= o o . By
abuse of notation, the function g is applied to each member of
the set returned by the function m. We call T the target grid, S
the source grid, m the assignment function, and f the aggrega-
tion function.

Note that the aggregate operator accepts two
user-defined functions as arguments. This design makes the
operator very flexible, but also burdens the user with function
definition. The assignment function in particular seems that it
might require significant ingenuity to define. However, the
algebraic properties of our language admit some relief. Since
our language allows reasoning about how grids are
constructed, relationships between the cells of two different
grids can often be defined topologically and simply.

For example, consider the CORIE grid described in Sec-
tion Error! Reference source not found.. We crossed an
unstructured 2-dimensional grid (the horizontal grid) in the xy
plane with a 0-dimensional grid consisting of points along the
z axis (the vertical grid). We noted in Section 0 that this grid
should not be considered fully unstructured, though it would
be considered so in most visualization applications. Instead,
we want to exploit the fact that the xy grid is duplicated for
every node in the z grid.

If this grid were modeled as fully “irregular,” the rela-
tionship between the cross product grid and the horizontal
grid is lost. Imagine we want to project the values in the cross

product grid down onto a horizontal “slice” to compute the
maximum value in each vertical column. To assign the nodes
of the cross product grid onto the nodes in the horizontal grid,
most systems appeal to the geometry data. Specifically, for
each node in the horizontal grid, existing tools must scan
every node in the full cross-product grid to find those cells
with matching xy coordinates. With our operators, we can
derive the fact that the horizontal grid is related to the full grid
via the cross product operator. We can use this relationship to
define the assignment function as the cell product, avoiding a
scan of every node in the full grid. Our experience working on
the CORIE project has shown that many of the grids found in
practice are topologically related to just a few “base” grids.
Since grids are first-class in our language, we are better able
to model and exploit these topological relationships to
simplify and accelerate our recipes.

Not every pair of grids exhibits a simple topological re-
lationship, however. Sometimes it is necessary to scan the
source or target grids and relate cells using data values. As we
mentioned in the last paragraph, such data-oriented as-
signment functions can involve extensive iteration; no
shortcuts based on topology are applicable. In these cases, our
model does not perform better than existing tools. However,
pinpointing the cause of the inefficiency as the assignment
task helps guide further analysis. In existing software, the
assignment step and aggregation step cannot be reasoned
about separately, obscuring the cause of inefficiencies.

Figure 8. Illustration of the CORIE vertical grid.

To further alleviate the burden of defining assignment
functions (purely topological or otherwise), we offer several
special cases of the aggregate operator, and promote them as
operators themselves. Each of the following can be defined in
terms of the aggregate operator.
z The apply operator assigns each k-cell to itself and then

applies a function to the k-cell’s data value. Intuitively,
apply simply applies a function to each value of the grid,
and forms a new gridfield with the results.

z The affix operator changes the domain of the gridfield
from j-cells to k-cells, applying a function to aggregate
the results. This operator can transform node-centered
datasets into cell-centered datasets.

z The unify operator is used to aggregate over an entire
grid, producing a single value. The output is a gridfield
over the unit grid consisting of just a single node.

B. Howe et al. / Journal of Environmental Informatics

 32

z The project operator is similar to the project operator in
the relational algebra. One provides the names of the data
values of interest given by a tuple-valued gridfield, such
as “velocity” or “salinity,” and all remaining data values
are removed.

4. Examples

In this section we describe and analyze two data products
used in the CORIE system. We will show how they can be
expressed as gridfield manipulations and optimized using
rewrite rules.

First we must construct the full grid over which the
CORIE simulations are computed. Figure 1 shows the
2-dimensional component of the full CORIE grid. Figure 8
shows the 1-dimensional component. Our plan is to compute
the cross product of these two component grids. Note, though,
that the vertical component in Figure 8 could also be
represented as a 0-dimensional grid; just a set of nodes. We
gave an example in Figure 4 of the effect this change has on
the result of the cross product operator. Using the
1-dimensional vertical grid, we obtain a 3-dimensional grid
constructed from prisms, faces, edges, and nodes. Using the
0-dimensional version of the vertical component, we obtain a
“stacked” grid, with the 2-dimensional component repeated at
each depth. Both of these product grids are used at various
times during the CORIE simulation. Our model admits
expression of both grids precisely and uniformly.

For the purposes of this example, we will assume the
vertical component is 0-dimensional. Indeed, let H be the
horizontal CORIE grid and let V be the vertical CORIE grid.
Then

,0 2[, , , ...] H H H = ∅ ∅

0[, , ...]V V = ∅ (7)

The full CORIE grid is then

G H V= ⊗

0 0 2 0[, , , , ...]G H V H V = × ∅ × ∅ (8)

Although the simulation code operates over this grid, the

solution is produced on a smaller grid. To see why, consider
Figure 8 again. The shaded region represents the bathymetry
of the river bottom. The horizontal grid is defined to cover the
entire surface of the water. At depths other than the surface,
some nodes are positioned underground! The simulation code
takes this situation into account and produces only valid,
“wet,” data values to conserve disk space. We must define this
“wet" grid to obtain an adequate description of the topology
of the data. The bathymetry data is represented as a river
bottom depth (a float) for each node in the horizontal grid.
Therefore, we model bathymetry as a gridfield over the
horizontal grid H. To filter out those nodes that are deeper

than the river bottom, we need to compare the depth at a node
in the product grid G with the bottom depth at the
corresponding node in H. Figure 9 shows this construction
using grid operators.

We point out a couple of details about Figure 9. The
predicate in the restrict operator is expressed in terms of
selector functions. Given a 0-cell e, the function component of
gfFullGrid will return a value () () ()xy ,bathym ,ze e e .

Passing this function compo- nent to the selector function z
returns the third element in the tuple, z(e).

The gridfield gfWetGrid returns 3-dimensional coordi-
nates and bathymetry information for each 0-cell in the grid.
The only nodes in the grid are those above the bathymetry
depth of the river at each point. The grid component of
gfWetGrid is now ready to be bound to data values supplied
by the simulation.

Maximum Salinity. The first data product we will ex-
press using this grid is a 2-dimensional isoline image of the
salinity in the Columbia River Estuary. An isoline image
draws curves representing constant values in a scalar field. In
CORIE, 3-dimensional gridfields for salinity and temperature
are projected down to two dimensions by aggregating over
depth and computing the maximum and minimum. Figure 2a
shows an example of this data product. Figure 9b gives the
recipe for the maximum salinity over depth.

The function crossj returns all the cells in one vertical
column of the 3-dimensional grid. An aggregation operation
that uses crossj as an assignment function produces a gridfield
over the 2-dimensional horizontal grid. The value associated
with each node is the maximum salinity found in the vertical
column of water located at that node. Figure 2a could be
generated by applying a contouring algorithm directly to this
data. In fact, even this contouring operation can be modeled
as an aggregation with a simple assignment function and an
aggregation function that associates a line segment with each
2-cell.

Plume Volume. The second data product we will de-
scribe is a calculation of plume volume. The plume is defined
as a region of water outside the estuary that exhibits salinity
below a given threshold. This definition implies that to obtain
the plume portion of the grid, we must cut away the river
portion, and then cut away the portion of the grid with salinity
values above the threshold.

Before these cuts, though, we must cut away the portion
of the grid that is above the surface of the water just as we did
for the underground values. We have simplified the discussion
by considering only a single point in time. In practice, we
would use another cross product to incorporate the
1-dimensional time grid, since the surface elevation changes
over time, unlike most models of river bathymetry.

Figure 9c shows the recipe producing a gridfield over the
plume portion of the grid, taking into account both
bathymetry and elevation. In this example, we use a vertical
grid that has both nodes and edges; it is 1-dimensional. We
first compute the cross product of the horizontal grid with
elevation values and the vertical grid with z values. Then we

B. Howe et al. / Journal of Environmental Informatics

 33

bind the salinity function to the grid computed in Figure 9a,
and apply a predicate on x to extract the ocean portion of the
grid. Next, we merge the two gridfields and apply the two
remaining predicates to filter out those cells positioned above
the water's surface and those with a salinity value 26 psu or
greater.

The gridfield gfPlume returns a 6-tuple
x,y,z,bathym,elev,salt defined over the nodes. To compute

the volume, we must calculate the volume of each prism in
the grid, and sum the values. We have some choices of how
we might do this. One way would be to 1) use project to
remove everything but the (x,y,z) coordinates, and 2) use affix
to produce a gridfield over prisms that returned 6-tuples of
(x,y,z) coordinate triples representing the corners of the prism,
and 3) use apply along with a specialized function for
computing the volume of prisms. However, let us assume that
we do not have such a function available. We can still
compute the volume using the fact that our grid is a cross
product of two simpler grids and not just an unstructured
assemblage of prisms. (Along with the assumption that the
(x,y,z) values refer to a Cartesian coordinate frame.)

Figure 10 illustrates the technique. We use affix to move
the data values from the nodes to the 2-cells and 1-cells on the
horizontal and vertical grids respectively. We allow the affix
operator to apply an aggregation function to the values after
they are assigned. In this case, we compute the area of the
triangles and the length of the line segments.

Next, we compute the cross product of these gridfields,
producing a gridfield that returns pairs, area,length for

each prism. (Refer to the definition of the cross product of
gridfield.) We then merge the new gridfield with gfPlume to
remove the prisms not in the plume. Finally, we can multiply
length by area using the apply operator to compute the
volume of each 3-cell, then sum those up with the unify
operator.

With these examples, we hope to demonstrate the flexi-
bility and simplicity of designing data products using our
framework. There was no discussion of how to iterate over
particular data structures, but we were precise enough to
specify the data product completely. Note also how we
re-used recipes: gfPlume appears in both Figure 9 and Figure
10. Since the same data products are often generated for each
run of the simulation, we envision the entire data product suite
being expressed and browsed as one large network of
operators. Such a network admits global reasoning, something
very difficult when the data products are simply unrelated
scripts and programs.

Another aspect of these examples we wish to point out is
our use of operator tree diagrams. These diagrams are
common in database query processing literature, and are very
helpful when reasoning about complex manipulations.

5. Analysis

One’s ability to reason about expressions in a language is
a function of the number of operators available and
complexity of the operators themselves. Reasoning about
VTK and DX programs is complicated by the hundreds of
different operations and their interdependent semantics. We

bind

H

bind

merge

bind

V

⊗

xy bathym. z

restrict(z>bathym)

gfWetGrid

gfWetGrid

bind

agg((H,0,crossj),max)

gfM axSalt

salinity

gfWetGrid

salt

restrict(x>300)

H

bind

elev

merge

⊗

V

bind

z

restrict(z<elev)

restrict(salt<26)

bind

gfPlume
a) b) c)

Figure 9. Recipes to compute (a) the valid (“wet”) portion of the CORIE grid, (b) the maximum salinity over
depth, and (c) the plume portion of the grid.

B. Howe et al. / Journal of Environmental Informatics

 34

have attempted to provide a language that more naturally
supports reasoning about correctness and efficiency. We use
four fundamental operators to express a wide range of data
products. We can also model details of the grids that other
approaches do not capture, such as arbitrary dimension,
shared topology, and implicit containment relationships. Our
operators also have reasonably intuitive semantics, though the
complexity of the problem space does infect some definitions.
Together, these language properties allow us to perform some
reasoning tasks that are difficult with large, cumbersome
libraries of highly-specialized algorithms. To illustrate the
kind of reasoning tasks supported by the language, we
consider the execution and optimization of a portion of the
plume recipe in Figure 9.

Figure 10. Computing the plume volume using the
cross product operator.

bind

H

bind

affix(0,2, area)

bind

V

⊗

xy bathym. z

gfVolume

gfPlume

merge

apply((*))

unify((+))

affix(0,1,length)

Consider Figure 11, a diagram based on a portion of the
plume computation in the last section. The boxes represent
gridfields over the full CORIE grid with salinity and geometry
information. The ovals are operators; m is a merge operator,
and r is a restrict operator (with r(X) denoting a predicate
over the grid X). Figure 11b is a recipe fragment directly taken
from Figure 9c. The other figures are equivalent recipes
generated by applying an algebraic identity, namely that
merge and restrict commute.

Readers versed in relational query processing might be
tempted to guess that Figure 11b is the best choice for

evaluation. The restrict operator appears similar to a rela-
tional select, and the merge operator appears similar to a
relational join. A common relational database optimization
technique is to “push selects through joins,” to reduce the size
of the inputs to the join. However, consider the fact that we
know that the two base gridfields are defined over the same
grid. If the grids S and X in Figure 11are equivalent, then the
merge operator does not need to do any work to compute
their intersection. Treating the merge operator as a join is not
appropriate in this case. If we place the restrict operators
after the merge operator and combine them (Figure 11a), we
might avoid an extra traversal of the grid S = X.

m

a)

Ss Xx

r(s,x) m

r(s)

b)

Ss Xx

r(x)
m

c)

Ss Xx

r(x)

r(s)

Figure 11. Three equivalent recipes.

Now we will look more closely at how we might evaluate

the restrict operators. One option is to bring the entire dataset
into memory, compute the restriction, and then pass the
reduced grid and its data on to the next operator. Another
option is to bring the grid into memory one cell at a time,
retrieve the data value associated with that cell, and evaluate
the predicate on the data value. If the value satisfies the
predicate, then its cell and value are passed on to the next
operator. We refer to the latter technique as pipelining, and
note that it is a common technique in database query
evaluation.

Since we are computing plume volume, we no longer
need the geometry data once we have restricted the grid to the
ocean portion. After this operator, we can remove the
geometry data from memory, admitting a possible perform-
ance boost. In our language, we would accomplish this task
using a project operator. If we do project out the unneeded
data, we avoid handling both the salinity data and the
geometry data in memory at the same time. We also do not
sacrifice the simple, constant-time evaluation of merge.
Although the grids are not equal, the ocean grid is guaranteed
to be a subgrid of the full salinity grid. The merge operator
can just replace the full grid with the reduced grid, which
amounts to reducing the domain of the salinity function. So, it
is plausible that Figure 11c is the best choice.

This example demonstrates the kind of reasoning one can
do when only a few operators need be considered. We used
the type information, the equivalence of grids, and some
consideration of the size of the grids. Attempting to do this
kind of analysis in the context of an entire software library

B. Howe et al. / Journal of Environmental Informatics

 35

would be difficult.
A prerequisite to the kind of analysis we applied in this

example is the ability to trace the propagation of data
properties through an expression. This task amounts to tracing
the property inductively through each operator. Table 1 shows
two properties, grid and size, of the output of each operator in
the language.

Estimating the size of intermediate results is helpful
when considering which of several equivalent recipes will re-
quire the least amount of work. We estimate the size of a
gridfield as the number of domain elements its grid contains,
multiplied by the arity of the tuple in the function's type. If a
gridfield returns a tuple of three values, such as x,y,z , the
arity of the tuple is simply three. In general, the arity of a
tuple type is just the number of elements in the sequence.
The arity of other primitive types is one. This estimate of size
is somewhat simplistic, but it does provide an indication of
which operators in a recipe will do the most work.

6. Related Work

Related work is found in the visualization community,
database community, and in the projects developing special-
ized scientific data management systems.

Data Models. Many scientific data models, especially
for visualization, have been proposed over the last decade and
a half. Butler and Pendley applied fiber bundle structures
found in mathematics and physics to the representation of
scientific data to support visualization (Butler et al., 1989;
Butler et al., 1991; Haber et al., 1991; Treinish, 1999). Fiber
bundles are very general topological structures capable of
modeling many diverse classes of objects such as simple
functions, vector fields, geometric shapes such as tori, and
visualization operations.

Fiber bundles showed great promise in their generality
and support for formal reasoning. However, limitations to
their direct use for scientific data modeling appeared. First,
fiber bundles were developed to model continuous fields
(manifolds), and do not address the discrete nature of

computational grids (Moran, 2001). Second, much of the
expressive power of fiber bundles is derived from
complexities that most scientific grids do not exhibit. Most
scientific grids are cast as “trivial” fiber bundles – simple
Cartesian cross products – that do not make use of the full
fiber bundle machinery.

Scientific Data Management Systems. Scientific data
manipulation has also been studied in the context of data
management. Some systems do not attempt to model the
contents of datasets, but just provide support for querying the
files and programs that produce them (Frew and Bose, 2001;
Foster et al., 2002; Wolniewicz, 1993). Metadata attached to
programs allows tracking of data provenance – the
information about how the data was produced. Users of the
Chimera system (Foster et al., 2002) can register their
programs and inputs and allow Chimera to manage execution.
This facility gives rise to a notion of virtual data that can be
queried before it has been derived.

Our work differs in two ways. First, these systems model
datasets and manipulations coarsely as indivisible files and
codes; we model the contents of the datasets and the patterns
of manipulations over them. Systems that rely on user-defined
programs are vulnerable to data dependence problems and do
not help ease the programming burden. Second, our work in
this paper does not tackle scientific data management as a
whole, though our project includes data management in its
scope and vision.

Scientific Visualization Systems. There also have been
efforts to develop combined scientific data management and
visualization systems. The Active Data Repository (ADR)
(Kurc et al., 2001) optimizes storage and retrieval of very
large multidimensional datasets, including gridded datasets.
Queries over the data involve three transformations related to
our operators: selecting a subregion, mapping one grid onto
another, and processing the results. ADR is highly customized
for particular domains. New C++ classes are developed for
each application.

Our work aims to formalize intuitions about grid map-
pings, grid selections, as well as several other operations
frequently encountered in scientific applications. We also
advocate a declarative approach that identifies the
commonalities across scientific data applications, rather than

Table 1. Output properties of core operators

Operator Expression Output Grid Output Size

bind bind(G,k,f) G | | ()kG arity f

merge merge[Ai
f, Bj

g] BA ∩))((|| farityBA kk ∩

cross product
g

j
f

i BA ⊗ BA ⊗
))()((|||| garityfarityBA ji +

restrict restrict(p)[Ak

g] depends on predicate less than | |kA

aggregate aggregate(T, k, m, f)[Aj
g] T))((|| garityTk

B. Howe et al. / Journal of Environmental Informatics

 36

specializing low-level code on a per-application basis.
Arrays Types for Databases. The database community

has investigated query language extensions supporting fast
collection types, often citing scientific data processing as a
motivation (Marathe and Salem, 1997; Libkin et al., 1996;
Fegaras and Maier, 1995). However, the ubiquity of arrays in
the scientific domain is not necessarily evidence that arrays
constitute an appropriate data model for scientific analysis,
but rather that more specialized data models have not been
developed. Further, direct use of arrays and other low-level
data structures lead to data dependence problems. Declarative
data languages have provided a solution to data dependence
by avoiding such structures. Rather than make one’s data
language more procedural, we recommend making one’s
application language more declarative.

Geographic Information Systems. Superficially, geo-
graphic information systems (GIS) (Eastman, 1997; Dewitt et
al., 1994) research seems closely related to our work.
Applications in both areas involve representations of data
objects physically positioned in some space of values.
Applications in both areas frequently make use of range
queries, where intervals in space are used to locate relevant
objects.

However, GIS are designed for a particular class of data
objects that does not include gridded datasets. Spatial
databases model and manage data objects that have a spatial
extent, while our work is to model spatial extents over which
data has been defined. In our domain, gridded datasets are
manipulated as a whole; finding objects located in space is a
secondary concern.

Raster GIS (Câmara, 2000; Widmann and Bauman, 1997;
Eastman, 1997) do manipulate grid structures, but they use
primarily structured grids. Grids are not considered first-class
and are difficult to reason about independently of the data.

Data models based on simplicial complexes, have been
proposed for GIS (Jackson, Egenhofer, and Frank, 1989) to
model a domain related to ours – datasets embodying
solutions to numerical partial differential equations (Berti,
2000). Simplicial complexes provide a formal topological
definition of grids. Our model allows cells to be other
polytopes besides simplices, but also sacrifices the mature
theory of simplicial complexes.

7. Conclusions and Future Work

Our motivation for formalizing grid manipulations is de-
rived from our more general interest in scientific data
management. We have observed that there are two funda-
mental tasks in scientific data processing: one to retrieve
datasets of interest and one to analyze those datasets, pro-
ducing data products. The first task requires that datasets be
identified using metadata such as dates, times, user names,
simulation parameters, and annotations. These kinds of data
are relatively well understood and are naturally modeled using
relational or object-relational systems. Datasets can then be
retrieved using the available query languages. The second task,
however, generally requires the use of highly specialized

applications or customized code. Our eventual goal is to
integrate the two tasks into one declarative language. In this
paper, we described our research into a language for the
second task. Our conclusion is that such a language can be
defined, and that only five core operators are necessary to
express all of the existing CORIE data products.

We have also used operator expressions as a common
framework for comparing the capabilities of different
software systems. For example, we can describe precisely the
difference between how VTK and DX implement a restrict
operation. VTK provides a “Threshold” object that behaves
much as we have described restrict. DX, however,
recommends marking restricted cells as “invalid” and then
filtering them out only in the final rendering. DX’s construct
is therefore a straightforward use of the aggregate operator.
The differences between such routines become clear when
cast as expressions in our language.

The language has also shown promise as an intermediate
specification language between English descriptions of data
products and programming language implementations. Data
products are usually first expressed in English for ease of
discussion. However, these descriptions are much generally
much too ambiguous to use to generate an executable program.
Correct implementations are necessarily precise, but the
simple conceptual description of the data product is lost in
obtuse code. Our “recipes” are simple enough to maintain
clarity, but precise enough to reason about correctness,
efficiency, and their relationship to the rest of the data product
suite. Figure 12 illustrates this idea.

English Recipes Code

simple, but
ambiguous simple and precise

precise, but
obfuscated

Figure 12. Means of describing data products.

Finally, we list several specific features of our language
that distinguish it from existing tools.
z Grids are first-class structures (see Section 1), allowing

grids to be shared between datasets and manipulated
independently.

z Grid geometry is modeled as data, simplifying the model
and allowing grids to be manipulated using purely
topological operators such as union, intersection, and
cross product.

z The cross product operator is used to express complex
grids simply and precisely.

z Grids of arbitrary dimension can be defined and ma-
nipulated.

z Functions abstractions allow independence from
choosing a particular data representation.

z Data can be associated with k-cells of any dimension,
avoiding ambiguities arising from associating, say, length
data with nodes.

B. Howe et al. / Journal of Environmental Informatics

 37

Although specialized processing is necessary for most
scientific applications, our operators clearly separate custom
code from core operator functionality. Specifically,
assignment and aggregation functions capture all customiza-
tions we have required thus far, save for the predicates passed
to restrict.

Equivalent recipes can be generated using algebraic
identities and compared by analyzing the types, grids, and
sizes of intermediate gridfields.

There are limitations to the language. Recursive ma-
nipulations such as a streamline calculation over vector fields
cannot be expressed easily. We are investigating a fixpoint
operator to express such manipulations. Also, we have not yet
integrated dataset manipulations with more traditional
metadata queries.

The language has proved useful for reasoning about the
computations in the CORIE system. Our ongoing work is to
provide an implementation of the language. The planned
implementation will involve two technologies: a functional
programming language for working with the abstract
operators, and a fast low-level language for the physical
operators. VTK is an appropriate starting point for the
physical layer; the algorithms are state of the art, and the
library is robust and well maintained. However, as discussed
in Section 1, the library will need to be extended with several
custom operations. For the logical layer, we plan to use the
functional language Haskell (Peyton-Jones et al., 1999) to
manipulate abstract grids and gridfields.

References

Baptista, A.M., McNamee, D., Pu, C., Steere, D.C. and Walpole, J.
(2000). Research challenges in environmental observation and
forecasting systems, in Proc. of the 6th Annual International
Conference on Mobile Computing and Networking, Boston, MA,
USA.

Berti, G. (2000). Generic Software Components for Scientific
Computing, Ph.D. Dissertation, Faculty of mathematics, com-
puter science and natural science, BTU Cottbus, Germany.

Butler, D.M. and Bryson, S. (1991). Vector-bundle classes form
powerful tool for scientific visualization. Comput. Phys., 6(6),
576-584.

Butler, D.M. and Pendley, M.H. (1989). A visualization model based
on the mathematics of fiber bundles. Comput. Phys., 3(5),
45-51.

Câmara, G., et al. (2000). TerraLib: Technology in support of GIS
innovation, in Workshop Brasileiro de Geoinformática,
GeoInfo2000, São Paulo, Brazil.

Codd, E.F. (1970). A relational model of data for large shared data
banks. Commun. ACM, 13(6), 377-387.

Codd, E.F. (1990). The Relational Model for Database Management:
Version 2, Addison-Wesley, MA, USA.

DeWitt, D.J., Kabra, N., Luo, J., Patel, J.M. and Yu, J. (1994).

Client-Server Paradise, in Proc. of the 20th International Con-
ference on Very Large Databases, Santiago, Chile, pp. 558-569.

Eastman, J.R. (1997). IDRISI User’s Guide, Clark University,
Worchester, MA, USA.

Fegaras, L. and Maier, D. (1995). Towards an effective calculus for
object query languages, in Proc. ACM SIGMOD, San Jose, CA,
USA, pp. 47-58.

Foster, I., Voeckler, J., Wilde, M. and Zhao, Y. (2002). Chimera: A
virtual data system for representing, querying, and automating
data derivation, in the 14th Conference on Scientific and
Statistical Database Management, Edinburgh, Scotland, UK.

Frew, J. and Bose, R. (2001). An Overview of the Earth System
Science Workbench, Technical report, Donald Bren School of
Environmental Science and Management University of Cali-
fornia, Santa Barbara, CA, USA.

Haber, R., Lucas, B. and Collins, N. (1991). A data model for
scientific visualization with provision for regular and irregular
grids, in Proc. of IEEE Visualization.

Jackson, J., Egenhofer, M. and Frank, A. (1989). A topological data
model for spatial databases, in Proc. ACM SIGMOD, Springer
Lecture Notes in Computer Science, Springer Verlag, 409, pp.
271-285.

Jones, M. and Peyton Jones, S. (1999). Lightweight extensible
records for Haskell, in Haskell Workshop Proc., Paris, France.

Kurc, T., Atalyurek, U., Chang, C., Sussman, A. and Salz, J. (2001).
Exploration and Visualization of Very Large Datasets with the
Active Data Repository, Technical report, CS-TR4208,
University of Maryland, College Park, MD,USA.

Libkin, L., Machlin, R. and Wong, L. (1996). A query language for
multidimensional arrays: design, implementation, and opti-
mization techniques, in Proc. ACM SIGMOD, Montreal, Canada,
pp. 228-239.

Marathe, A.P. and Salem, K. (1997). A language for manipulating ar-
rays, VLDB J., 46-55.

Moran, P. (2001). Field Model: An Object-Oriented Data Model for
Fields, Technical report, NASA Ames Research Center, Moffett
Field, CA, USA.

OpenDX Programmer’s Reference (2002).
 http://opendx.npaci.edu/docs/html/proguide.htm.
Peyton-Jones, S.L. and Hughes, J. (Eds.) (1999). Haskell 98: A

Non-strict, purely functional language.
http://www.haskell.org/onlinereport.

Schroeder, W.J., Martin, K.M. and Lorensen. W.E. (1996). The
design and implementation of an object-oriented toolkit for 3D
graphics and visualization, in Proc. of IEEE Visualization.

Treinish, L. (1999). A function-based data model for visualization, in
Proc. of IEEE Visualization.

Widmann, N. and Baumann, P. (1997). Towards comprehensive
database support for geoscientific raster data. ACM-GIS, 54-57.

Wilkin, M., Pearson, P., Turner, P., McCandlish, C., Baptista, A.M.
and Barrett, P. (1999). Coastal and estuarine forecast systems: A
multi-purpose infrastructure for the columbia river. Earth Syst.
Monit., 9(3), National Oceanic and Atmospheric Administration,
Washington, DC, USA.

Wolniewicz, R.H. and Graefe, G. (1993). Algebraic optimization of
computations over scientific databases, in Proc. of the 19th
International Conference on Very Large Data Bases, Dublin,
Ireland, pp. 13-24.

