
Logical and Physical Data Independence for Native Scientific Data
Repositories

Bill Howe
OGI School of Science & Engineering at

Oregon Health & Science University
Beaverton, Oregon
bill@cse.ogi.edu

David Maier
Department of Computer Science

Portland State University
Portland, Oregon

maier@cs.pdx.edu

Abstract

Many datasets in the physical sciences, especially the results of simulations, are defined over a topolog-
ical grid structure. Applications in these domains would benefit from a principled interface to gridded
datasets via a specialized data model. Traditionally, benefits of a data model are realized only after
data is ensconced within a managed database environment. However, massive bulk-loading and re-
loading operations in large-scale data repositories are prohibitively expensive. Instead, we superimpose
a specialized data model over native data repositories stored on directly on OS filesystems rather than
managed by a database system. Views in a specialized data model can be defined via references to
native directory structures and file content, providing physical and logical data independence. This
non-intrusive approach appears to reduce space requirements, speed development, and cooperate with
legacy applications.

1 Introduction

Scientific data repositories are approaching petabyte scales. Data manipulation in the context of such large
repositories benefits from a well-defined data model interface. Physical and logical data independence provided
by a data model insulate applications from the organization details and provide custom interfaces without copy-
ing and restructuring data. Algebraic optimization can recover performance penalties incurred by an extra layer
of software and simplify previously hand-optimized applications.

In practice, most data models are implemented as heavyweight database systems requiring that legacy data be
injected into a managed environment before benefits can be realized. Loading and re-loading data into database
environments during development, and even simply inserting new data after successful deployment, can become
infeasible. In our experience, bulk-loading simulation results into a relational database took almost as long as
the simulation itself [4].

Further, the transition to a database-managed environment is far from smooth. Maintaining two copies of
data during development, one managed and one native, can quickly deplete storage space. Without multiple
copies, stable legacy applications must be adapted to the new interface in parallel with ongoing development
and testing.

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

arrays directories, files, structs, arraysgridfields

Figure 1:Mapping data from a filesystem model to an array model to a gridfield model.

Another approach, advocated in this paper, is to superimpose a data model overin situdata to provide princi-
pled access to unmanaged data, specifically in Earth science domains. That is, given a scientific data repository
stored directly on a Unix filesystem, we aim to 1) describe it and 2) access it through a more specialized grid-
based data model developed in previous work [4].

The context for our work is the CORIE Environmental Observation and Forecasting System being developed
at the OGI School of Science and Engineering at Oregon Health and Science University [1]. The CORIE
system is a multi-purpose platform for studying the fluid dynamics of the Columbia River estuary. Customers
of CORIE’s data products include commercial fisheries, environmental policy makers, and external research
institutions. The CORIE repository consists of forecast and “hindcast” simulations covering time periods since
1998. Each day, forecast simulation runs add about 5GB to the data repository, while batches of hindcast runs,
batches of calibration runs, and individual researchers’ experiments are executed concurrently. At this rate of
growth, organizing the simulation results for convenient retrieval and analysis becomes difficult.

Three-dimensional spatial datasets are produced for each instant of simulated time, for each of several phys-
ical variables. These timestep datasets are distributed across severalcheckpointfiles, each one usually cover-
ing a 24-hour period of simulated time. Checkpoint files have a custom binary format, and are arranged in
a directory structure by week, by code version, and sometimes by purpose; e.g., calibration runs as opposed
to final results. As a concrete example, a checkpoint file for the first Saturday of 2004 might have the path
hindcasts/01-2004/1 salt.63 . Every application accessing these data must understand the semantics
of file and directory names, or interpret custom binary file formats, or both. The resulting situation is that much
of the CORIE software is rather brittle with respect to changing data characteristics.

In previous work, we proposed agridfield data model for manipulating gridded datasets [4] independently
of physical organization details. The gridfield data model promotes topological structures to first-class entities,
exposing equivalences and enabling optimization opportunities hidden by other tools. For example, the expres-
sion Restrict(a>b, Cross(A, B)) computes a kind of join between two gridfieldsA andB, while
preserving certain topological invariants.

In order to provide a gridfield interface to CORIE’s significant existing data repository without destroying
their native representations, we map the existing data structures (directories, files, arrays) into gridfields using
gridfield schema files. Gridfield schema files describe how to translate source data into arrays, and thence how
to assemble arrays to produce gridfields. Figure 1 illustrates the situation.

A gridfield schema file (henceforthschema file) holds a set of declarations.FileTypedeclarations describe
directory structures and allow access to data encoded within file and directory names.BinaryBlockTypesde-
scribe the layout of binary files. GridField declarations specify their constituent data through references to
FileTypes and BinaryBlockTypes. With these declarations, we can assemble gridfields by pulling components
together from multiple files, by extracting a portion of a single file, by extracting information from file names
and directory names, or by an arbitrary combination of these methods. The finished schema file can then be
appliedto acontextto determine which gridfield declarations (if any) can be activated given the available data.

2

With this mechanism, users have a common interface for both a structured data repository as well as individual
files resulting from private experiments.

Effective use of information encoded in file and directory names requires more than simply invoking OS
system calls and parsing strings. The logical structure of a data repository is frequently reflected in the directory
structure, and filenames carry semantic information about their relationships with other files. A thorough model
should allow transparent access to information in both a file’s name and its content.

To illustrate, consider that the boundary between file name and file content can change depending on the
situation. For example, the directory tree illustrated in Figure 3 has a separate file for each day of the week (for
each variable). In this case, the day of the week is not stored within the file, and is therefore inaccessible to
tools for reasoning only about a file’s content [5, 7, 8]. This representation reflects the manner in which the data
was generated: A checkpoint file was recorded for each day of the week to simplify recovery in case of failure.
An individual researcher’s ad hoc experiment might not require such caution; she might lump a week’s worth
of results into a single file without saving any checkpoints. In order to provide transparent access to either of
these two representations, the model must capture information that spans file and directory names as well as file
contents.

We acknowledge two roles involved with this framework. TheSchema Designerwrites FileType, Binary-
BlockType, and Gridfield declarations to a text file and publishes it to a well known location. TheApplication
Developerapplies the schema file to a context and manipulates available gridfields by writing expressions in
a gridfield algebra. To preserve physical data independence, application developers are not expected to work
directly with FileTypes or BinaryBlockTypes.

We do not support updates through the gridfield interface, though we do support some forms of append
operations. Scientific data repositories tend to be append-only due to the need for provenance; even “bad” data
tends to be kept, uncorrected, if space permits. Though support for updates to data values is not a priority,
minimizing the impact of evolving representations is. By allowing arbitrary gridfield expressions to appear in a
schema file, we provide a simple view facility and therefore logical data independence. Applications using the
gridfield interface are insulated from changing representations. Only those portions of the schema file affected
by the change must be adjusted by the schema designer.

The following list summarizes the benefits of a our approach.

• Transparent interoperation with legacy applications.No reorganization of the data is required for use.

• Incremental return on investment. As additional schema declarations are recorded, additional function-
ality is supported.

• Transparent support for partially conforming data. By not requiring all declarations to be activated in
all contexts, the same schema file can be used as an interface to private data (with less structure perhaps)
and public data (with more structure).

• Generality. External sources of data published to the web often follow a filesystem-like data model, and
can therefore be accessed with the same framework as local data repositories.

2 GridField Data Model

A gridfield consists of agrid, and one or moreattributes. A grid is a set ofcells, partitioned by dimension. Each
cell of dimensiond > 0 (d-cell) is defined by a sequence of references to cells of dimensiond = 0 (nodes).
For example, a triangle is a sequence of three references to nodes. Every non-empty grid must have at last one
0-cell. Each attribute is bound to the cells of exactly one dimensiond, such that eachd-cell maps to exactly one
value of the attribute.

3

1: GridField Horiz
2: Horiz.grid.cells[0] = implicit 10
3: GridField Vert
4: Vert.grid.cells[0] = implicit 15

5: GridField G = Cross(Horiz, Vert)
6: G.temperature(0) = <array expr>

1: GridField G
2: G.grid.cells[0] = implicit 20
3: G.grid.cells[d] = <cell array expr>
4: G.a[d] = <array expr>

a) b)

Figure 2:Two examples of gridfield assembly syntax.

In this section we discuss how to assemble gridfields from arrays. An array namedname with n elements of
typeτ will be writtenname[n](τ) . Elements may be of a primitive numeric type, a tuple of named attributes,
or another array. We will describe the source data model of arrays and tuples in more detail in the Section 4.

An example of a gridfield declaration appears in Figure 2a. The nodes for the grid component of the gridfield
G can be defined by an array expression returning integers (explicit node references) or by using the keyword
implicit . The declaration in Figure 2 specifies that the grid ofG will have 20 nodes when assembled. The
third line in Figure 2a specifies how to construct a set of cells of a dimensiond > 0 (e.g., line segments, triangles,
tetrahedra). The placeholder<cell array expr> must have one of the following two forms.

array[N](m : int, array[m](n1 : int, n2 : int, ..., nm : int))

whereN is the number of cells (the size of the array), and each cell is a sequence ofm references to a node.
The second form is

array[N](n1 : int, n2 : int, ..., nM : int))

whereN is the number of cells and every cell hasM nodes. The first form corresponds to mixed cell types
found in grids used for finite-element simulation (e.g., both triangles and quadrilaterals appear in the same grid.)
The second form corresponds to the uniform cell types found in graphics applications (e.g., triangles in two
dimensions or tetrahedra in three).

To bind an attributea to cells of dimensiond, we use the syntax in line 4 of Figure 2a. The placeholder
<array expr> must return an array of primitive elements (no nested sequences or arrays). Array elements
are associated with cells positionally; the first cell is bound to the first array element, the second cell is bound to
the second array element, and so on.

We can also remove the integer argument to the keywordimplicit . Without this argument, the keyword
indicates that the number of nodes is unconstrained, and may be derived from the number of values in an attribute
bound to the0-cells. When the argument is present, the number of nodes is constrained to be the argument’s
value, and binding attributes with a different cardinality results in an error.

Gridfields can also be declared through expressions of a gridfield algebra, as in Figure 2b. We first define
two gridfieldsHoriz andVert in lines 1 and 3, and then construct theircross productin line 5. The gridG
will have 150 nodes and one bound attribute,temperature . The details of this and other gridfield operators
can be found in a previous paper [4].

In the next section, we will describe how to extract the requisite arrays from native data formats.

3 Modeling Filesystem Data

Scientists frequently store and manage their data using direct filesystem interfaces. Limitations to this ap-
proach are evident. A file’s metadata must frequently be embedded in file and directory names. For ex-
ample, a dataset available from the National Climate Data Center (NCDC) website is stored in a file named

4

/horiz.grd
/vert.grd

/grids

/do_run.pl/scripts

/1_salt.63
/1_temp.63
/2_salt.63
/2_temp.63
:

/02-2004

/1_salt.63
/1_temp.63
/2_salt.63
/2_temp.63
:

/01-2004/run

Figure 3:Simulation results stored on an ordinary filesystem.

FileType weekly_run
pattern[wk,yr] = /run/%i-%i/
FileType salt63
pattern[day] = %i_salt.63
FileType temp63
pattern[day] = %i_temp.63

GridField Days
G.grid.cells[0] = implicit
G.day[0] = salt63.day

FileType alldays
pattern[wk,yr,day] = /run/%i-%i/%i_salt.63

GridField AllDays
G.grid.cells[0] = implicit
G.week[0] = alldays.wk
G.year[0] = alldays.yr
G.day[0] = alldays.day

a) b)

Figure 4:A gridfield schema for extracting information from a filesystem directory structure.

meso-eta 215 20030803 1800 fff [6]. The meaning of the date string “20030803” is apparent, but the
other fields require some external information to parse. Constraints are also difficult to express. The file from
the NCDC above was found in a directory named20030803 . Presumably, all files within this directory should
be tagged with this date, and those that aren’t represent anomalies.

A filesystem can be modeled as a labeled tree, where internal nodes are directories and leaves are files. To
extract information from file names or directory structure, we can access the labeled tree using path patterns,
as with XML or other tree-based data models. However, instead of returning a list of files that match the path
pattern, we extract data items embedded within file names.

Consider the filesystem in Figure 3. The root directoryruns contains directories with simulation results for
each week of 2004 in the form<week number>-2004 . Each week directory contains 14 files, one for each
variable (salinity, temperature) day of the week (1-7).

To access the week number or day number embedded in these file names, we can write apath patternin the
style of the Unix scanf command.

[week, year, day] = /runs/%i-%i/%i salt.63

The left-hand side of this expression is a tuple of variable names. The right-hand side is a pattern matched
against the set of all files in some filesystem context. Wildcard placeholders are given a one-character type
code (i for integer,f for float, etc.). Each variable name can be accessed as a sequence of values generated
by evaluating the pattern against a particular filesystem context. Note that the sequence order is defined by the
manner in which the directory is traversed. A potential extension to the language is to allow arrays to be sorted
to prescribe a particular ordering.

5

GridField Horizontal
Horizontal.grid.cells[0] = implicit image.h

GridField Vertical
Vertical.grid.cells[0] = implicit image.v

GridField Image = Cross(Horizontal, Vertical)
Image.r[0] = image.data.r
Image.r[0] = image.data.g
Image.r[0] = image.data.b

BinaryBlock image
image.content = (

header : 10c
h : i
w : i
data : h*(

row : w*(
r:i g:i b:i

)
)

)

a) b)

Figure 5:A gridfield schema file for extracting binary file content.

Schema designers declare file types by associating a type name with a path pattern. Given a filesystem
context, a data type can be evaluated to return a sequence of tuples whose attribute names are given by the list
of variable names, and whose types are given by the type codes of the wildcards. For example, we can define
separate types for the run directories, the salinity data, and the temperature data as in Figure 4a.

The appropriate gridfield declaration is very simple (bottom of Figure 4a). GridfieldDays consists of0-cells
only, and its cardinality is determined implicitly by the number of files that match the path pattern.

The array expression for attributeday of GridfieldDays references the name of the FileType defined above,
and then uses the dot notation to access one of the variables defined in the path pattern. If a schema with the
definitions above were applied to the directory02-2004/ of Figure 3, the gridfieldDays would consist of 7
nodes since there are seven files that match the pattern. (Note that node order is undefined.)

We could just as easily have chosentemp63 to determine the number of days; the ambiguity reflects the
fact that theday attribute is redundantly defined in the filenames of all simulation variables. An alternative
encoding, requiring an alternative schema file, would be to add directoriesday1 , day2 , and so on to remove
the redundancy.

Another mapping from directory structure to gridfields is to “unnest” the days from within the (week, year)
tuples. The syntax for this alternative is shown in Figure 4b.

4 Modeling File Content

Scientists frequently use packed binary encodings of large datasets to preserve space and improve performance.
We model the content of binary files using named primitive types, records (where each element is named and
may have a different type) and arrays (where all elements have the same type and are referenced by position
only). Both structures support arbitrary nesting. Arrays are one-dimensional; multidimensionality is captured
through nesting.

A schema for a block of binary content representing an image appears in Figure 5a. The top-level component
is namedimage , which contains a 10 character string namedheader , the heighth and widthwof the image,
and a two-dimensional array of RGB values. The height and width are primitive components of the formname
: type , where type in this case isi signifying an integer. The data component has a type of the form
x*(component) wherex is the name of an integer component (or is an integer literal) andcomponent is
another named component in the current scope. In this case, another array component is nested within the first
to represent the second dimension.

Tuple elements are accessed by name or position. An array element is accessed through conventional integer
indexing An array can also be “sliced” to produce another array as in APL or Matlab. Some examples of these
expressions appear in Table 1.

6

Table 1: Example expressions and their types.
expression type
image.h integer

image.data.row[1] (R:i, G:i, B:i)
image.data.row.R array[h*w](R:i)

image.data[a:b] array[b-a](array[w](R:i, G:i, B:i))
image.data.row[a:b:c] array[(b-a)/c](array[w](R:i, G:i, B:i))

This language is not particularly expressive; for example, we cannot transpose, sort, or aggregate arrays.
The language is meant only as a means of accessing data within binary formats, rather than as a means of
transforming data or deriving new data.

To construct gridfields from file contexts, we use a syntax similar to that used to assemble gridfields from
arrays extracted from the filesystem, as in Figure 5b.

5 Nested Gridfields

Each gridfield declaration is evaluated against acontext. A context is either the root context, a FileType, a
BinaryType, or a concatenation of contexts. The root context is provided by the application developer during
connection to the data repository. So far, we have written declarations as if they all are evaluated against this
root context. To assemble more complexnestedgridfields, we need to pass a context in as an argument to each
declaration. Effectively, gridfield declarations are functions mapping contexts to gridfields.

Consider the schema in Figure 6, where the gridfield declarations are adorned with a context argument. As
an argument, a context represents a single entity. Using the dot notation, we can concatenate contexts and/or
access data items within contexts. For example, for the GridField declarationTime , ROOTis a single entity, the
directory (or file) supplied by the application developer to which the schema is being applied. The expression
ROOT.gridfile.time , however, will return an array of values extracted from the time field of FileType
gridfile . The expressionROOT.gridfile.scalardata requests that the contents of each grid file
be interpreted according to the binary block declarationscalardata . Since each element of this array has
complex structure, we cannot construct an ordinary attribute of primitive values. However, we can construct a
nested gridfield, where each element of a new attribute is itself a gridfield.

The syntax for a nested gridfield involves referencing the name of the gridfield declaration and passing it
an array expression as an argument. Each element of the array expression is considered a context in which
to assemble a gridfield. Therefore, the syntax is effectively shorthand for a list comprehension expression, as
denoted by the C-style comment below the declaration of gridfieldTime .

In the declaration forGridField Geometry , a grid with explicit triangular cells is constructed. The
gridfield hasx and y values bound to the nodes representing the position of each node in two-dimensional
space. The gridfieldTempandVelo are both assembled from the gridfieldGeometry . Of course, we might
have decided to model these data as a single gridfield with three attributestemp , u, andv . By separating the
temperature data from the velocity data we illustrate the variety of modeling decisions a schema designer may
make.

6 Related Work and Discussion

Scientific applications today in some ways resemble business applications circa 1977. Copious amounts of data
are stored in files with intricate formats. Skepticism regarding database technology is prolific. Legacy systems

7

FileType gridfile
pattern[time] = %i_*.grd

BinaryType griddata
content = (
nodes : i
elements : i
triangles : elements*
(n1:i n2:i n3:i)

geometry : nodes*
(x:i y:i)

velocity : elements*
(u:f v:f)

temp : elements*
(value:f)

)

GridField Geometry(griddata)
Geometry.cells[0] = implicit griddata.nodes
Geometry.cells[2] = griddata.triangles
Geometry.x[0] = griddata.geometry.x
Geometry.y[0] = griddata.geometry.y

GridField Temp(griddata) = Geometry(griddata)
Temp.temp[2] = griddata.temp.value

GridField Velo(griddata) = Geometry(griddata)
Velo.u[2] = griddata.velocity.u
Velo.v[2] = griddata.velocity.v

GridField Time(ROOT)
Time.cells[0] = implicit
Time.time[0] = ROOT.gridfile.time
Time.velo[0] = Velo(ROOT.gridfile.griddata)
Time.temp[0] = Temp(ROOT.gridfile.griddata)
// = [Temp(c) | c <- ROOT.gridfile.griddata]

Figure 6:A gridfield schema involving nested gridfields.

are built from efficient but extremely brittle software components. To mitigate the perceived (and real) risk of
adopting unproven database systems, early data models were implemented as file transformation engines.

The EXPRESS system [7] provided two languages: one for describing a file’s structure, and another for
transforming that structure. Transformations were used as a query facility, but also as a bulk load facility to
translate legacy data into a new format. Our approach is similar, though we distinguish two data models: one
for source data (directory structures and file content) and another for target data (gridfields). We have not yet
considered materializing gridfields assembled using schema files. That is, we do not permanently transform
source data into gridfields, but rather provide a gridfield interface to in situ data.

Batory gave a taxonomy of record-oriented file structures used by commercial databases in terms of fields
and pointers [2]. Our work similarly provides a description of grid-oriented file structures in terms of arrays.
Once precisely described, Batory showed how you could convert from one representation to another in a princi-
pled manner, or compose the transforms. Tools to convert between array-oriented representations are valuable,
though we are primarily interested in lifting arrays into more semantic structures, particularly gridfields.

The Binary Format Description Language (BFD) [5] is an XML dialect that describes binary formats and
allows transformation of binary data to XML data. While this tool has a niche, our interest is to support efficient
and flexible access to binary data - converting binary data to XML is clearly impractiacl for large datasets. The
BinX [8] library is also related to this proposal. Binary data file formats are described using instances of a
specialized XML Schema. An API allows access to the data and automatic reformatting according to the local
machine’s byte order and bit order. The current proposal aims to provide more powerful reasoning capabilities
than simple file access. BinX supports only sequential file access, and file structures are all assumed to fit in
memory. BinX also offers no support for transforming representations; any restructuring is done “manually” in
a C program after reading in an entire source file.

Current research on schema integration, particularly the concept of local-as-view [3], is also related to our
approach. A notable difference is that the source data is frequently stored in a manner much more suitable to
query and manipulation (usually a relational database). Wrappers and mediators also serve to provide access to
native data. However, data sources are usually modeled as black-boxes with a limited interface. Our context
allows us to reason about the source data in considerable detail, though we cannot prescribe changes in its
organization.

8

In conclusion, we advocate in situ processing of large scientific data repositories as a means of harnessing
database techniques without the substantial cost of database deployment. Database technology is not prolific
in the scientific community; the real and perceived cost of ownership is part of the reason. If some database
techniques can be teased apart from their monolithic implementations, the database community stands a chance
of contributing a tangible benefit to the scientific community.

References

[1] A. Baptista, M. Wilkin, P. Pearson, P. Turner, M. C., and P. Barrett. Coastal and estuarine forecast systems: A multi-
purpose infrastructure for the columbia river.Earth System Monitor, NOAA, 9(3), 1999.

[2] D. S. Batory. Modeling the storage architectures of commercial database systems.ACM Trans. Database Syst.,
10(4):463–528, 1985.

[3] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational plans for data integration. InAAAI/IAAI, pages 67–73,
1999.

[4] B. Howe and D. Maier. Algebraic manipulation of scientific datasets. InProceedings of the 30th International
Conference on Very Large Databases (VLDB2004), 2004.

[5] J. Myers and A. Chappell. Binary format description language. Technical report, Pacific Northwest National Labora-
tory.

[6] National Climatic Data Center. NCEP AWIPS eta model data. http://nomads.ncdc.noaa.gov:9090/dods/NCDC
NOAAPort ETA.

[7] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum. EXPRESS: A data EXtraction, Processing, amd
REStructuring System.ACM Transactions on Database Systems, 2(2):134–174, 1977.

[8] M. Westhead and M. Bull. Representing scientific data on the Grid with BinX - binary XML description language.
Technical report, EPCC, University of Edinburgh, 2003.

9

