
Retrofitting a Data Model to Existing Environmental Data

Bill Howe David Maier

Department of Computer Science
Portland State University

Portland, Oregon
{howe, maier }@cs.pdx.edu

Abstract

Environmental data repositories are frequently stored as
a collection of packed binary files arranged in an intricate
directory structure, rather than in a database. In previous
work, we 1) show that environmental data is often logically
equipped with a topological grid structure and 2) provide a
data model and algebra of gridfields for manipulating such
gridded datasets. In this paper, we show how to expose na-
tive data sources as gridfields without preprocessing, bulk-
loading, or other prohibitively expensive operations. We
describe native directory structures and file contents using
a simple schema language based on nested, variable-length
arrays. This language is capable of describing general bi-
nary file formats as well as custom formats such as those
used in the CORIE Environmental Observation and Fore-
casting System. We provide optimization techniques for ex-
tracting arrays by 1) analyzing file structure and 2) generat-
ing specialized code. Using extracted arrays, we assemble
gridfields for more sophisticated manipulation and visual-
ization. We show results from the CORIE Environmental
Observation and Forecasting System. We find that generic
access methods allow logical manipulation of physical data
sources via the gridfield algebra without reformatting exist-
ing data.

1 Introduction

Integration of data within institutional and regional envi-
ronmental systems is hindered, in part, by the heterogeneity
of data formats. For example, the Northwest Association of
Ocean Observing Systems (NANOOS) [1], chartered in re-
sponse to a congressional initiative, aims to federate various
institutional systems to provide a more comprehensive view
of the coastal ocean in the Pacific northwest. The NANOOS
charter acknowledges the significant number of ocean ob-
serving systems, but warns that these systems are not in-

tegrated in that they “do not share standards or protocols.”
In the interest of accelerating federation efforts in the envi-
ronmental sciences, we have been studying the logical and
physical structure of environmental data.

Environmental simulation and observation data are fre-
quently defined over a topological grid structure. For ex-
ample, a timeseries of sensor measurements might be de-
fined over a 1-dimensional (1-D) grid, while the solution to
a partial differential equation using a finite-element method
might be defined over a 3-dimensional (3-D) grid. Datasets
can be bound to a grid structure, producing what we call a
gridfield. In previous work [7, 9], we develop a data model
and associated query language for manipulating gridfields.

The salient feature of the gridfield model is that the grid
structure of the datasets is explicit. Traditionally, data were
stored and manipulated as arrays; the logical grid structure
was appeared only in the code itself. By reifying this hidden
grid structure, we are better able to describe and implement
a variety of manipulations using a small set of algebraic op-
erators. Further, the data model helps separate logical and
physical concerns, insulating software layers from changing
physical representations.

However, in order to use gridfields to manipulate data
from existing disparate sources, we must be able to read and
interpret existing stored data; that is, we need appropriate
access methods. Environmental datasets (indeed, most sci-
entific datasets) are stored directly on a filesystem in packed
binary files. Legacy applications can interpret these files,
but new applications based on gridfields cannot.

One approach is to convert existing datasets to a special
format already equipped with a gridfield interface. Indeed,
database vendors frequently assume this approach: Before
your data can be manipulated using the relational model,
you must surrender control to the DBMS via bulk load op-
erations. Unfortunately, the growth rate of collected sci-
entific data is sufficiently large that sweeping conversion
efforts are unlikely to succeed. Besides scalability issues,
legacy analysis tools dependent on a particular format are

common in scientific domains; mandatory rewrites of these
tools would be unpopular.

Our initial solution was to hand-code custom access
methods for each file format we encountered. Besides be-
ing time-consuming, this approach is inflexible with respect
to datasets that span multiple files. To generate a gridfield,
code to iterate over multiple files is layered on code to in-
terpret each file’s format. Finally, the results are used to as-
semble gridfield objects suitable for manipulation with the
gridfield algebra. These kind of routines became common
enough to look for an appropriate abstraction that could cap-
ture all of them. We presented the vision for this approach in
previous work [8]. In this paper, we describe languages and
tools for accessing filesystem data with arbitrary structure
without resorting to mass conversion. We do not discuss the
output of gridfield expressions; results are generally piped
into a visualization system for interactive analysis.

The context for our interest in grids is the CORIE En-
vironmental Observation and Forecasting System being de-
veloped at the OGI School of Science & Engineering at Ore-
gon Health & Science University [2]. The CORIE system
is a multi-purpose platform for studying the fluid dynamics
of the Columbia River estuary. Customers of CORIE’s data
products include commercial fisheries, environmental pol-
icy makers, and external research institutions. The CORIE
repository consists of forecast and “hindcast” simulations
covering time periods since 1998. Each day, forecast sim-
ulation runs add about 5GB to the data repository, while
batches of hindcast runs, batches of calibration runs, and
individual researchers’ experiments are executed concur-
rently.

In a particular run of a simulation, 3-D spatial datasets
are produced at regular intervals of simulated time, for each
of several physical variables. These timestep datasets are
distributed across severalcheckpointfiles, each one usu-
ally covering a 24-hour period of simulated time. Check-
point files have a custom binary format, and are ar-
ranged in a directory structure by week, by code ver-
sion, and sometimes by purpose; e.g., calibration runs as
opposed to final results. As an example, a checkpoint
file for the first Saturday of 2004 might have the path
hindcasts/01-2004/1 salt.63 . Every application
accessing these data must understand the semantics of file
and directory names, or interpret custom binary file formats,
or both. The resulting situation is that much of the CORIE
software is rather brittle with respect to changes in either
directory structure or file format.

As we see with the CORIE system, logical datasets are
not necessarily one-to-one with the files that house them.
The physical organization of logical datasets is subject to
operational constraints, and can sometimes cause incconve-
nience for application writers. One dataset may span several
files due to file size limits of the OS, for example. Portions

of a dataset arriving at different times may be stored in sep-
arate files, as are the checkpoint files described above. Sev-
eral datasets may be stored together in one file to simplify
transfer over a network or to share metadata in the filename
or path. Access methods for filesystem data should support
these situations.

The file or files that make up one logical dataset are not
just lumped together on the filesystem, but rather arranged
in a potentially intricate directory structure. This directory
structure may itself contain important information. For ex-
ample, the run directories in Figure 4a contain the week and
the year. To construct a gridfield representing a weekly av-
erage temperature, we would like to extract the week num-
ber from the directory name itself, while averaging the tem-
perature values extracted from file content. Access methods
should not ignore directory structure information.

The boundary between file name and file content is not
inherent in the logical structure of the data, and can change
depending on the situation. For example, the directory tree
illustrated in Figure 4a has a separate file for each day of
the week (per variable). In this case, the day of the week
and the week number is not stored within the file, and is
therefore inaccessible to tools for reasoning only about a
file’s content [11, 15]. This representation reflects the man-
ner in which the data was generated: A checkpoint file was
recorded for each day of the week to simplify recovery in
case of failure. An individual researcher’s ad hoc exper-
iment might not require such caution; she might lump a
week’s worth of results into a single file without saving any
checkpoints. In order to provide transparent access to either
of these two representations, the model must allow uniform
access to data stored in a file or data stored in the surround-
ing directory structure. Further, access methods should ac-
commodate changes in physical organization without sig-
nificant programming effort.

Since existing data comes in two forms – embedded in
the directory structure and inside files – two physical access
methods are required. However, adopting a single logical
interface to both forms of data is desirable for conceptual
economy.

Imagine we wish to visualize the average temperature
near the water’s surface for each week in 2004. The grid-
field model allows us to perform aggregation and visualiza-
tion, but first we must collect the appropriate data from the
filesystem. Pseudo-code to gather the data might look like
this:

2

for each run in 2004:
for the temperature variable:

for each timestep:
for each horizontal surface node:

for the 1st two vertical depths:
add the value to the result

The boundary between directory-level data and file con-
tent data is not apparent in the pseudo-code, nor should it
be. We want the system to accept queries in terms of the
logical structure, invoking the appropriate physical access
method as necessary. To provide such functionality, the sys-
tem must understand that a “run” corresponds to a directory,
that “temperature” and other variables are each stored in a
separate file, and that each of these files contain horizon-
tal and vertical dimensions nested within a time dimension.
Further, we need the ability to identify the runs for 2004,
and the “first two” depths.

To communicate the physical structure of the data repos-
itory to the system, users writeschema filesin which they
declare relevanttypes. Each type is associated with either
1) a regular expression identifying a set of files, or 2) an ex-
pression describing a block of binary data. With an appro-
priate schema file, we can express the above pseudo-code
as follows:

run[year=2004].temp.times.horizs.depths[0:2]

The result is an array built by copying the values to a
sequential block of memory. This array can then be used as
part of a gridfield object for further processing. The code to
traverse directories, iterate over files, and interpret a file’s
content efficiently is provided by the system.

The flexibility of accessing directory structure data uni-
formly with file content data can negatively impact perfor-
mance. To maintain efficiency, users can generate special-
ized access programs for a schema to improve performance.
For binary files, programs can be further specialized by pro-
viding a representative instance for a class of related files. In
this case, we can partially process the instance to generate a
program tailored for answering queries over other instances
of the same form. For example, although the structure of the
checkpoint files can be highly variable, files for the same
simulation run often have the same structure. By generat-
ing a program for one instance, we can efficiently access all
related instances.

1.1 Contributions

Our contributions are the following:

• A data model for describing arbitrary binary data.

• A complementary data model for describing data embed-
ded in directory structures and file names. Together, we
refer to these two mini-models as theNative Data Model.

(a) (b)

Figure 1. (a) A structured grid. (b) An unstructured grid.

• Access methods derived from the Native Data Model for
extracting filesystem data.

• Optimization and code generation techniques to effi-
ciently evaluate extraction queries over native content.

• Evidence of utility from the CORIE project.

• Experimental evidence that suitably optimized generic
access methods can perform competitively with hand-
coded access methods.

We will present our two-level data model in a top-down
fashion. In Section 2, we review the salient features of the
gridfield data model. In Section 3, we give examples of
schema files for accessing binary file content as well as data
encoded in the directory structure. In Sections 4 and 5, we
focus on evaluation techniques and experimental results, re-
spectively, for accessing binary content. We end by dis-
cussing related work, future work, and some conclusions.

2 Gridfield Data Model

A gridfield consists of agrid, and one or moreattributes.
A grid is a set ofcells, partitioned by dimension. Cells of
dimensionk are calledk-cells. A grid has dimensiond if
it contains no higher dimensional cells. Cells are connected
through an explicit or implicitincidence relation. For ex-
ample, a triangle is a2-cell to which three0-cells (the ver-
tices) and three1-cells (the edges) are incident. Every non-
empty grid must have at last one0-cell. Each attribute is
bound to the cells of exactly one dimensiond, such that
eachd-cell maps to exactly one value of the attribute. With
this model, we can have geometric attributesx andy bound
to the vertices of a triangle, and an area attributea bound to
the2-cells.

The gridfield model provides an algebra with which to
manipulate gridded datasets. Some operations in the alge-
bra are reminiscent of relational operators but equipped to
manage topology considerations. These includeRestrict
and Cross, which are like relational selection and cross
product, respectively, but extended to maintain topologi-
cal invariants [7]. Other operators are specific to gridfields.
These include theBind operator, which adds additional at-
tributes to a gridfield, and theAggregate operator, which

3

(b)(a)

Figure 2. (a) The horizontal unstructured CORIE grid.
(b) Illustration of the river’s batyhmetry. The shaded region
is underground.

can map cells of one grid onto another and aggregate the
attribute values appropriately.

Grids are said to bestructured or unstructured; our
model treats both cases uniformly. The grid in Figure 1a
is 2-dimensional structured and the grid in Figure 1b is
a 2-dimensional unstructured grid consisting of triangles.
Structured grids have implicit topology and can be mod-
eled naturally by multidimensional arrays. Unstructured
grids require explicit topology; the connections between
cells must be included as part of the representation. Struc-
tured grids are easier to represent and admit very efficient
algorithms. However, unstructured grids allow more precise
modeling of a complex domain such as a coastline. Fewer
cells may be required with an unstructured grid, which
means less work during processing.

The CORIE system uses a 2-dimensional unstructured
grid to model the surface of the water around the mouth
of the Columbia River Estuary (Figure 2a). This hori-
zontal grid is repeated at each depth in a 1-dimensional
structured grid, creating a 3-dimensional grid. The slop-
ing bathymetry of the river causes many of the grid cells
of this 3-dimensional grid to be positioned underground.
Figure 2b illustrates the situation. Each dotted line rep-
resents a copy of the horizontal surface grid repeated at a
particular depth. The shaded region represents the bottom
of the river. The horizontal levels towards the bottom con-
tain fewer valid “wet” cells than the levels near the surface.
These invalid cells must be removed to correctly interpret
CORIE datasets.

Given a horizontal gridH and a vertical gridV , the fol-
lowing expression generates the appropriate 3-dimensional
gridfield for the CORIE system and associates a datasetsalt
for further processing.

G = Bind(salt, 0, Restrict(b < z, Cross(H,V))) (1)

The cross product ofH andV (the Cross operator) rep-
resents the full 3-D domain of the Columbia River estuary
and surrounding ocean. TheRestrict operator cuts away

1: GridField H
2: H.grid.cells[0] = implicit 10
3: H.grid.cells[d] = <array expr>
4: H.x[0] = <array expr>
5: H.y[0] = dot63.y

6: GridField V
7: V.grid.cells[0] = implicit 15
8: V.z[0] = dot63.z

9: GridField G = Restrict(b>v, Cross(H, V))
10: G.temperature(0) = dot63.temp

Figure 3. Examples of gridfield assembly syntax.

the portion of the grid positioned underground (the shaded
region in Figure 2b). TheBind operator reads in an ar-
ray namedsalt and attaches it as an attribute of the grid’s
0-cells.

To use gridfields, programmers can construct them
“manually” in their code, or they may write and reusegrid-
field declarations. An example of a gridfield declaration ap-
pears in Figure 3. All parts of the gridfield can be described
individually as a sequence of values and represented phys-
ically as an array. In previous work, we describe different
representations of gridfields [7]. In this paper, we use the
array-based representation exclusively.

The 0-cells of the grid are usually specified implicitly,
using the keywordimplicit . The declaration in Figure 3
specifies that the grid ofG will have 20 nodes when assem-
bled. Cells of higher dimensions are defined as sequences
of integer references to0-cells. A triangle will have three
references, and so on.

To bind the attributex to cells of dimension0, we use
the syntax in line 4 of Figure 3. The placeholder<array
expr> represents an extraction query (described in Section
3). Here, we omit the query itself for clarity. Array elements
are associated with cells positionally; the first cell is bound
to the first array element, the second cell is bound to the
second array element, and so on. Other attributes are bound
similarly.

We can also remove the integer argument to the keyword
implicit . Without this argument, the keyword indicates
that the number of nodes is unconstrained, and may be de-
rived from the number of values in an attribute bound to the
0-cells. When the argument is present, the number of nodes
is constrained to be the argument’s value, and binding at-
tributes with a different cardinality results in an error.

Gridfields can also be declared through expressions in
the gridfield algebra, as in lines 7 and 8 of Figure 3. Given
two gridfieldsH andV defined on lines 1 and 5, we con-
struct theircross producton line 7. The gridG will have
150 nodes and one bound attribute,temperature . With
these declarations, we have specified the same gridfield as
in Equation 1. The details of the gridfield operators can be
found in a previous paper [7].

4

/horiz.grd
/vert.grd

/grids

/do_run.pl/scripts

/1_salt.63
/1_temp.63
/2_salt.63
/2_temp.63
:

/02-2004

/1_salt.63
/1_temp.63
/2_salt.63
/2_temp.63
:

/01-2004/run

FileType weekly_run
pattern[wk,yr] = /run/%i-%i/

FileType salt63
pattern[day] = %i_salt.63

FileType temp63
pattern[day] = %i_temp.63

a)

b)

Figure 4. Simulation results stored on an ordinary filesys-
tem.

3 Native Data Model

In this section we discuss the lower-level data models
for accessing data encoded in directory structures and data
encoded in binary files.

A filesystem-based data repository is described via a col-
lection of declarations housed in a schema file. There are
two types of declarations.FileTypedeclarations describe
relevant directory structures and allow access to data en-
coded within file and directory names.BinaryBlockType
declarations describe the layout of portions of binary files.

3.1 Data From Directory Structures

Scientists frequently store and manage their data us-
ing direct filesystem interfaces, using filenames and di-
rectory structures equipped with metadata. For ex-
ample, a dataset available from the National Climate
Data Center (NCDC) website is stored in a file named
meso-eta 215 20030803 1800 fff [12]. The mean-
ing of the date string “20030803” is apparent, but the other
fields require some external information to parse. A schema
file can store this external information.

Consider the filesystem in Figure 4a. The root direc-
tory runs contains directories with simulation results for
each week of 2004 in the form<week number>-2004 .
Each week directory contains 14 files, one for each variable
(salinity, temperature) day of the week (1-7).

To access the data embedded in these file names, we can
write apath patternin the style of the Unix scanf command.

[wk, yr, dy] = /runs/%i-%i/%i salt.63

The left-hand side of this expression is a tuple of variable
names. The right-hand side is a pattern matched against the
set of all files in some filesystem context. Wildcard place-
holders are given a one-character type code (i for integer,f
for float, etc.). Each variable name can be accessed as a se-
quence of values generated by evaluating the pattern against
a particular filesystem context. Note that the sequence or-
der is determined by the manner in which the directory is
traversed by the system calls for a particular OS.

Schema designers declare file types by associating a type
name with a path pattern. Given a filesystem context, each
variable defined for a file type can be accessed as an array
whose type is given by the code of that variable’s wildcard
placeholder. For example, we can define separate types for
the run directories, the salinity data, and the temperature
data as in Figure 4b.

To extract data from a filesystem that conforms to this
schema, we write a path-like expression navigating through
the FileTypes, where the right-most identifier is a variable
name.

weekly run.salt63.day

This expression returns an “array” of all day values ex-
tracted from salt63 files in all weekly run directories. A
natural extension to this basic form is to allow XPath-like
conditions.

weekly run[week=04].salt63[day<4].day

This expression restrict the results to a particular week and
particular days. To reflect the array semantics, we can
also allow array-style indexing expressions. An expression
name[n : m] returns all elementsname[i] for n ≤ i < m.

weekly run[0:2].salt63[1:3].day

This expression selects the zeroth and firstweekly runs ,
and the first and secondsalt63 files. The indexes refer to
the ordering of the files as returned by the operating system,
not the values of the day variable itself. Note that FileType
declarations are not linked to each other; a schema does
not prescribe a directory hierarchy. Different queries may
express different sequences of FileTypes. Any, all, or none
of these sequences may be valid with respect to an actual
filesystem. For example, an individual scientist may have
several “loose”salt63 files stored in their home directory.
Queries can then reference them directly, without having to
first navigate through a run directory.

BinaryBlockTypes, described in the next section, do im-
pose a particular structure for the content they describe. If a
query attempts to navigate the binary data in an manner not
supported by the schema, an error is raised.

5

BinaryBlock ragged : {
header : 10c
n : i
sizes : n * {

size : i
}
outer : n * {

inner : size * {
v:f u:f

}
}

}

“RAGGED_ARR”

4

1, 3, 1, 2

(0.6,0.4)
(0.2,0.9),(1,3),(1.7,2.6)
(2.1,9.4)
(3.8,8.9),(4.2,1.6)

5241 4747 4544 5f41 5252
0000 0400 0000 0100 0000
0300 0000 0100 0000 0200
0000 9a99 193f cdcc cc3e
cdcc 4c3e 6666 663f 9a99
993f cdcc 4c40 9a99 d93f
6666 2640 6666 0640 6666
1641 3333 7340 6666 0e41
6666 8640 cdcc cc3f

(a) (b) (c)

Figure 5. A schema file for extracting binary file content and two representations of a file instance. Each color of shading
represents a different logical component in the schema.

3.2 Data From Binary Files

Scientists frequently use packed binary encodings of
large datasets to preserve space and improve performance.
In this section we describe a model of this data and it’s inter-
face with the model of the directory structure. We model the
content of binary files as a sequence ofcomponents. Each
component is either aprimitive component with an asso-
ciated name and typecode, or anarray component, with a
name, a length, and an element type. Our examples will use
the primitive typecodes ‘f’, ‘i’, and ‘#c’, representing float-
ing point numbers, integers, and character arrays of fixed
length ‘#’. The element type of an array is another sequence
of components. In the tree resulting from these nested se-
quences, each leaf is a primitive component and each inter-
nal node except the root is an array component. Arrays are
one-dimensional; multidimensionality is captured by nested
arrays.

A file format for storing a simple ragged array is de-
scribed in Figure 5, an instance of the file, in ASCII, is
shown in Figure 5b, and a hexadecimal representation is
shown in Figure 5c. The root component in Figure 5a is la-
belled as aBinaryBlock and given the nameragged .
The top-level components, in order of their appearance in
the file instance, are a 10-character string namedheader ,
an integern, an arraysizes and an arrayouter . Primi-
tive components are written<name> : <type> . Array
components are written<x>*(<components>) , where
x is a length expressionevaluating to an integer and
components is a sequence of components describing
structure of the array’s elements. The length expression of
an array can be an integer literal, a reference to a primitive
component appearing earlier in the file, or an arithmetic ex-
pression involving one or more of these items. In Figure 5a,
the length of the arrayouter is a reference to the compo-
nentn. The element type of the arrayouter is another ar-
ray component,inner , representing a second dimension.

Scanning the file instance in Figure 5c sequentially, we
encounter a ten-character header “RAGGEDARR”, then

the integer 4, then 4 integers 1, 3, 1, 2, and finally a longer
sequence of floating point numbers (Figure 5b).

The length of the arrayinner is a reference to the in-
teger componentsize , which itself is a sub-component of
an arraysizes . For each element ofouter , a different
size is specified by indexing into the arraysizes . The
portion of the instance in Figure 5b corresponding to the
componentinner consists of1 + 3 + 1 + 2 pairs of float-
ing point values. Each pair has a value for the component
u and the componentv . Since the two arraysouter and
sizes have the same expression for their array length (the
expression ‘n’), there is no ambiguity as to which particular
element ofsizes is being referenced.

Programmers can access file data by writing path ex-
pressions navigating through the schema. Members of a
sequence are accessed by name. An array element is ac-
cessed through conventional integer indexing. An array can
also be “sliced” to produce another array as in APL or Mat-
lab. Some examples of these expressions appear in Table
1. In the “return type” column, we write an array of sizen
with element typeτ asarray[n](τ) . Elements may be
of a primitive numeric type, a tuple of named attributes, or
another array.

We require that the length of the array appear before the
array itself. Without this restriction, the only way to in-
terpret the file would be to have explicit pointers to infor-
mation deeper within the file. Allowing the length of an
array to be defined anywhere earlier in the file is a general-
ization of other binary description formats that require that
the length of a variable-length array be defined immediately
prior to the array’s elements [11, 15]. Many formats, in-
cluding netCDF [10], and HDF [4], CORIE’s own internal
format make use of this generalization.

Unlike path expressions over directory structure data,
we currently do not support expressions involving selec-
tion predicates such asouter.inner[v=4].u . We cur-
rently focus onstructural navigation of binary data rather
thanvalue-dependentnavigation.

6

Table 1. Example extraction queries and their types.
expression return type

ragged.n integer
ragged.outer.inner[1] (u:f, v:f)

ragged.outer.inner.u array[(
∑i<n

i=0 sizes[i])](u:f)
ragged.outer[a:b].inner.u array[b-a](array[*](u:f))

ragged.outer.inner[a:b:c].v array[(b-a)/c](array[*](v:f))

4 Evaluating Queries Over Binary Data

In this section we describe the query evaluation engine.
We wrote the prototype in Python extended with the numar-
ray library for handling large numeric arrays. C code was
emitted for the code generation experiments.

After writing a schema file, users can parse and process it
by calling Python functions. Given the schema file shown in
Figure 5, the schema parser produces an internal represen-
tation of the schema as shown in Figure 6. This representa-
tion is called aschema graph. Nodes in this graph represent
readersfor the appropriate schema component, and arrows
represent pointers. The dashed lines represent pointers used
in array length expressions. Nodes in a sequence point to
their immediate predecessor in the sequence. Nodes below
the root level point to their parent array component, and
each array component points to each of its children (bidi-
rectional arrows in Figure 5).

Each primitive reader can report a value given acontext
taken from the query expression. A context corresponds to a
sequence of labeled coordinates, one for each level of nested
array. For example, a particular value ofv is specified with
two coordinates. The corresponding context is a sequence
of (exp, i) pairs, whereexp is a label for the length expres-
sion of an array component, andi is an integer such that
0 ≤ i < eval(s). For example, for the parsed schema in
Figure 6, we can ask thev reader to produce a value for the
context[(’n’, 1), (’size’, 1)] , [(’n’, 1),
(’size’, 2)] , and so on. Bounds checking prevents
invalid contexts from being evaluated.

Some readers require less context information than oth-
ers. A primitive value at the beginning of a file, for ex-
ampleheader in Figure 5, has no parent and no imme-
diate predecessor, and knows its size statically. There-
fore header.size = 10 andheader.position =
0. The reader forn reports its size as 4, and its position de-
pends recursively on the position and size ofheader . The
size of the arrayouter depends on the reader for its length
n, and the size of each of its children. The position ofv is
computed by adding thepartial sizesof each level of nested
array to the local offset within each element type. Thenth
partial size of an array is the sum of the sizes of elements 0
throughn− 1.

Given this simple representation, a naı̈ve program to ex-

header

sizes
size

outer
inner

v

n

u

Figure 6. Internal graph representation of a schema file.

tract av value from the instance in Figure 5b might make
many recursive calls as it asks for positions and sizes of ev-
ery element preceding the desired value, then repeating the
process for each value requested. A better plan is to ana-
lyze the schema, looking for sizes and positions that can be
computed quickly. For example, we can compute the length
of thesizes component by readingn and multiplying by
a constant, since its only child is a fixed-size primitive.

In Figure 7, we illustrate the processing steps to eval-
uate queries. The parser produces a schema graph as dis-
cussed. The Static Optimizer transforms the parser’s output
by instantiating specialized readers for particular situations.
Arrays whose children are all primitives have a fixed ele-
ment size can compute partial sizes quickly. A sequence of
primitives at the beginning of the file have fixed positions.
Arrays whose length is a primitive at the top-level can cache
the value when it is read the first time, and arrays with a lit-
eral length need not ever read it at all. The Static Optimizer
propagates this information throughout the schema graph to
reduce the number of recursive calls.

The output of the Static Optimizer is used by two differ-
ent modules. The Dynamic Optimizer uses a file instance
to partially evaluate the expressions encoded in the schema
graph. The dynamic optimizer was originally designed to
exploit similarities between related files by preprocessing
structural information (i.e., lengths of arrays) shared be-
tween them. However, the dynamic optimizer is also used,
unaltered, as the first step during ordinary query evalua-
tion. There are two modes of operation for this module:
1) Given a representative file, the system can partially eval-

7

Schema

Parser
Static

Optimizer

Dynamic
Optimizer

File Instance

Code
Generator

Generated
Program

Evaluator

Result

Query

File Instance

Figure 7. Schematic of the query evaluation engine for
binary blocks.

uate the computations encoded in the schema graph. The
results can be reused for future queries on future file in-
stances. Currently it is up to the programmer to ensure that
any future file instances agree with the representative file.
2) If a query and a file arrive at the same time, the first step
is again to apply dynamic optimizations and the second step
is to evaluate the query. For mode 1), the programmer in-
dicates which schema components to preprocess. For mode
2), the list of components to preprocess is discovered by an-
alyzing the query. The Code Generator produces access
methods for each primitive reader in the schema. For each
primitive reader, the module traverses the optimized (and
partially evaluated) schema graph as if evaluating a query
for all values in all contexts for the reader. For example,
for the componentv , the Code Generator begins to evaluate
the queryouter.inner.v . However, instead of making
calls into the internal representation to determine sizes and
positions of various components, we emit code for comput-
ing the values at run time.

The Code Generator takes input from either the Static
Optimizer or the Dynamic Optimizer. Generally, though,
we use only the output from the Static Optimizer to avoid
over-specializing the generated reader programs. The Code
Generator can produces either Python or C code. The
Python output was used primarily for testing, since the code
structure is iteration-heavy and incurs a significant perfor-
mance overhead in an interpreted language. The Python
output and the C output are effectively isomorphic.

The query processor itself, bordered by the dashed line
in Figure 7, may use either generated programs or the inter-
nal representation. Currently, the programmer is responsi-
ble for managing the generated programs and making them
available to the query processor. An appropriate extension
is to have the system manage the generated programs, and
then automatically select an appropriate program if it is
available.

The Evaluator is a function that traverses the optimized
internal representation and evaluates the query directly. The
most significant feature of this function is its ability to trans-
form and simplify the schema in response to a particular

BinaryBlock transformed : {
header : 6c
n : i
sizes : n * {

size : i
}
outer_inner : (2 * sum(size)) * {

uv:f
}

}

u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6, u7, v7

Q = outer[0:2].inner.u

Q' = outer_inner[0:7:2].uv

(a)

(b)

Figure 8. A transformation of a schema to simplify query
processing. Q’ is a simplified version of Q.

query. By finding and exploiting a simplified schema that
can answer the given query, we reduce the amount of work
(i.e., number of recursive calls) required to evaluate the
query.

In Figure 8a, we show a transformed version of the
schema in Figure 5a, along with a transformed query. The
modified portions of the schema are in bold. We have
blended the two componentsu andv into a single compo-
nent nameduv . Further, the nested, ragged array has been
flattened into a single, longer array. The new length is the
sum of all thesize values times two (since there are two
floats,u andv).

In Figure 8b, we have a sequence of values represent-
ing the contents of the schema instance in Figure 5b. The
query Q is the original, and Q’ is the result of transforma-
tion. The values to be returned by both queries are the same;
they appear in bold. The brackets represent the grouping
structure specified by the original schema (the top brackets)
and the transformed schema (the bottom brackets). The ad-
vantage of this type of transformation is that we can read
a large block of data and then “slice” the resulting array to
select the appropriate values. In the original structure, we
were forced to loop through the internal representation of
the schema, looking up the sizes of the inner dimension.
The transformed schema results in fewer iterations. In Sec-
tion 5, we show that this type of transformation can result in
significant performance improvement for our Python-based
implementation.

Although we identify and exploit simple instances of
this transformation, it remains future work to describe the
general form of these simplifications for arbitrarily nested
variable-length arrays.

8

5 Experimental Results

Our experiments use data from the CORIE system [2].
Figure 9 shows the schema for the simulation result files on
which we ran our experiments. Logically, these files house
a timeseries of three-dimensional datasets bound to a grid.
For each simulation run, one of these files is produced for
each of 7-10 variables, for each day of simulated time. The
sizes of these files range from 35MB for two-dimensional
variables such as surface elevation or wind pressure at the
surface, to 655MB for horizontal velocity vectors for each
three-dimensional point. The entire data repository holds
around 5000 simulation runs, with additional runs executed
every day.

The header portion of each file, shown in non-bold type,
gives time-independent information. The vertical grid gives
z coordinates (thezcor component). The horizontal grid
consists of nodes withx and y coordinates (nodedata
component) and triangles consisting of three nodes each
(thecells component). Other time-independent informa-
tion includes the river’s bathymetry (bathymetry), rep-
resented as an index into the vertical grid for each node in
the horizontal grid. This index points to the deepest level
for each horizontal node that is still above the bottom of
the river. For example, there are 62 levels of depth in the
vertical grid for our test case, and 29602 nodes in the hor-
izontal grid. For each of the 29602 nodes, the component
b gives an integer from 0 to 61 representing one of the 62
depth levels. All levels below the indicated level are under-
ground. Data for underground points are not stored to save
space on disk.

The time-varying portion of the file, highlighted in bold
type, is a nested array component. There are four levels
of nesting. The outermost component istimestepdata .
For each element, there is a float and an integer repre-
senting the number of seconds since midnight and the
logical timestep, respectively. Following that, there is
an array component calledsurfdata . Similar to the
bathymetry component in the header, thesurface
component gives an index into the vertical grid. This index
represents the surface of the water: the highest level that
still holds valid data. However, the water’s surface changes
over time, we need a surface array for each timestep. After
the surface indices, we have the actual simulated data. For
each horizontal node, we have a variable number of depth
levels, depending on the bathymetry. For each depth level
above the bathymetric boundary, we have a vector of length
rank . Scalar values have a rank of one, velocity values
may have a rank of two or three, and so on.

We compare the performance of four representative
queries using seven different techniques. The queries are
listed in Table 2 and the results are presented in Table 3.
Query 1 extracts the first complete timestep of data from the

magic : 48c, version_string : 48c
start_time : 48c, variable_nm : 48c
variable_dim : 48c, nsteps : i, timestep : f
skip : i, rank : i, idim : i,
vpos : f, zmsl : f, levels : i
zcor : levels * {

z : f
}
nodes : i
elements : i
nodedata : nodes * {

x : f, y : f, h : f, bathymetry : i
}
cells : elements * {

nodeids : 3 * { id :i }
}
time-varying data
timestepdata : nsteps * {

tstamp : f, tstep : i
surfdata : nodes * { surf : i }
horizontal : nodes * {

depths : (levels - bathymetry + 1) * {
vector : rank * { value : f }

}
}

}

Figure 9. A BinaryBlock describing the CORIE simula-
tion output.

file, copying it to an array in memory. Query 2 access all
timesteps, but extracts only a relatively small portion of the
horizontal data; 3000 nodes. Query 3 extracts the first two
depth levels for every horizontal node, for every timestep.
Since we do not know how many depth levels exist at each
node until we read the file’s header, we cannot derive the
result size statically; some nodes may have as few as one
depth level. Query 3 returned the largest result size in prac-
tice, at 5.6 million floating point numbers. This query also
caused the largest problem for our software. Query 4 ex-
tracts the surface information for timesteps 30 through 45.
This query does not directly involve any variable-length ar-
rays and is therefore easier to compute for most techniques.
This query also had the smallest result size.

The simplest technique we tested was to use the internal
representation produced by the static optimizer directly (ex-
periment (a) in Table 3). While this basic tool worked well
on small files during testing and development, it struggled
on the large files of the CORIE system. After 500 seconds,
we stopped the experiments. The use of the Dynamic Opti-
mizer leads to improved performance (experiment (b)). The
Dynamic Optimizer prefetches information from the header
during query evaluation, and is therefore able to simplify or
eliminate many computations.

Experiment (c) in Table 3 uses a small class of schema
and query transformations (see Section 4). These transfor-
mations act as shortcuts, allowing us to read large blocks of
data from the file and then “slice” them to extract the appro-
priate values. For example, Q1 returns an entire timestep.
The system can detect that there is no need to iterate over

9

Table 2. Tested queries with result sizes.
label query result size
Q1 timesteps[0:1].H.V.vector.v 3.3MB
Q2 timesteps.H[2000:5000].V.vector.v 16.3MB
Q3 timesteps.H.V[0:2].vector.v 22.7MB
Q4 timesteps[30:45].surfdata.surf 1.77MB

each horizontal node and each vertical level; it can simply
compute the sizes of a timestep from the header informa-
tion, seek to the beginning, and read alls bytes. The result
is dramatic improvement in performance. The effect is es-
pecially pronounced due to our choice of technology. The
Python language can perform well when expensive routines
are pushed down into the compiled C code underpinning the
language. Reading and slicing arrays are examples of these
fast operations.

Note that for Q3, we are unable to identify an appropriate
transformation. Since the vertical component has a variable
length, there is no simple pattern we can use to extract the
data values we want. We must access much more data to
navigate through the file. The hand-coded reader (experi-
ment (g) in Table 3) is able to evaluate this query efficiently
by precomputing cumulative sizes of the variable-length ar-
rays and striding through them as necessary. It remains fu-
ture work to identify the general form of this technique.

Experiment (d) executes identical code to Experiment
(c). For this case, we subtract the time spent prefetching
and optimizing. The rationale is that for large classes of
similar files, this work need only be done once rather than
for each file.

Experiments (e) and (f) use generated C programs to
compute the results. The first is a program generated di-
rectly from the static optimizer’s output. We performed
these experiments to see whether a compiled language
would outperform the Python routines even without signif-
icant optimization. The results show that traversing these
large files without guidance is prohibitively expensive even
for a compiled C program. The specialized generated pro-
gram is created from the results of the dynamic optimizer
and is specialized for a particular class of file instances. The
rationale is that many of these specialized readers could be
generated and stored by the system. When planning eval-
uation of a query, the specialized programs could be con-
sidered as fast alternative access methods. Unfortunately,
these generated programs do not perform as well as ex-
pected. The reason is that hte transformation optimizations
that gave good performance in experiments (c) and (d) are
not incorporated in the generated code. In ongoing work we
are improving the quality and performance of the generated
programs. Note that the specialized generated program ex-
hibits stability; it was able to evaluate Q3 without incurring
the same magnitude of penalty as the other approaches.

Table 3. Response times in seconds by query.

Experiment Q1 Q2 Q3 Q4
(a) static >500 >500 >500 >500

(b) dynamic 28 138 284 8.64
(c) dynamic + transf. 0.83 1.0 86 0.85

(d) spec. + transf. 0.02 0.24 85 0.26
(e) generated, gen. 65 104 >500 3.2
(f) generated, spec. 4.7 22 32 2.6

(g) by hand 0.02 0.5 0.6 0.02

6 Related Work

Scientific applications today in some ways resemble
business applications circa 1977. Copious amounts of data
are stored in files with intricate formats. Skepticism regard-
ing database technology is prolific. Legacy systems are built
from efficient but brittle software components. To mitigate
the perceived (and real) risk of adopting unproven database
systems, early data models were implemented as file trans-
formation engines.

The EXPRESS system [13] provided two languages: one
for describing a file’s structure, and another for transform-
ing that structure. Transformations were used as a query
facility, but also as a bulk load facility to translate legacy
data into a new format. Our approach is similar, though
we distinguish two data models: one for source data (di-
rectory structures and file content) and another for target
data (gridfields). We have not yet considered materializing
gridfields assembled using schema files. That is, we do not
permanently transform source data into gridfields, but rather
retrofit a gridfield interface onto in situ data.

Batory gave a taxonomy of record-oriented file structures
used by commercial databases in terms of fields and point-
ers [3]. Our work similarly provides a description of file
structures in terms of arrays.

The Binary Format Description Language (BFD) [11] is
an XML dialect that describes binary formats and allows
transformation of binary data to XML data. While this tool
has a niche, our interest is to support efficient and flexible
access to binary data – converting binary data to XML is
clearly impractical for large datasets. The BinX [15] library
is also related to this proposal. Binary data file formats are
described using instances of a specialized XML Schema.
An API allows access to the data and automatic reformat-
ting according to the local machine’s byte order and bit or-
der. The most recent version added support for nested ar-
rays, but only if their length is fixed.

The External Data Representation standard (XDR) [14]
is a data description language focused on machine-level
number representation issues. Variable-length arrays in

10

XDR must have homogeneous elements (i.e., their elements
cannot themselves be variable-length), and their lengths
must be encoded directly prior to the first element. Fur-
ther, XDR obviously does not describe directory structures,
a feature critical for datasets that span multiple files.

Code generation has been used by the database com-
munity to improve performance. The EXODUS and later,
the Volcano optimizer generators [5, 6] processed algebraic
transformation rules and produced compiled code to apply
the rules efficiently while searching for a query plan. We
generate access methods themselves rather than a system
for choosing an access method.

7 Future Work and Conclusions

We have identified several areas for ongoing work.
Constraints. We would like to include constraints as

part of the schema language for binary block types. Con-
straints could be used to validate files before processing.
Constraints can also be used to represent optional compo-
nents. Some condition must be true if the optional compo-
nent exists; the condition will be false if it does not.

Alternative schemes for the same binary content.We
would like to add explicit support for multiple schemas over
the same binary content. We derive new schemas internally
during dynamic optimization, but we cannot reason about
user-specified alternative schemas. Schemas specialized to
particular access plans can be supplied by the user and con-
sidered during query evaluation.

More expressive queries.We plan to add support for
value-based predicates on arrays, in order to push some
gridfield processing into the native data model subsystem.
We are also working on “output schemas” that allow files
to be restructured without programming. Given 1) an in-
put schema and 2) an output schema with a subset of the
input’s declarations, we aim to allow instances of the input
schema to be automatically and efficiently transformed into
instances of the output schema. The output of gridfield ex-
pressions could be represented similarly.

We advocate in situ processing of large scientific data
repositories. Converting Terabytes of data to support new
data models is infeasible, and continuously writing access
methods for changing formats is time consuming. Our re-
sults show that although file formats with high variability
can be expensive to process without programmer guidance,
hand-coded access methods can be replaced with generic
or generated access methods. We recognize that a logi-
cal dataset can often span multiple files in practice, and
that the directory structure and filename can encode part
of the dataset’s structure. These techniques can facilitate
data sharing between research groups and institutions with
heterogeneous data formats.

8 Acknowledgements

We would like to thank the CORIE science team for their
input and support. This work was was supported by NSF
ITR Award No. ACI-0121475

References

[1] Northwest Association of Networked Ocean Observing Sys-
tems. http://www.nanoos.org.

[2] A. Baptista, M. Wilkin, P. Pearson, P. Turner, M. C., and
P. Barrett. Coastal and estuarine forecast systems: A multi-
purpose infrastructure for the columbia river.Earth System
Monitor, NOAA, 9(3), 1999.

[3] D. S. Batory. Modeling the storage architectures of com-
mercial database systems.ACM Trans. Database Syst.,
10(4):463–528, 1985.

[4] N. C. for Supercomputing Applications (NCSA).
HDF5: API specification reference manual.
http://hdf.ncsa.uiuc.edu/, 2004.

[5] G. Graefe and D. J. DeWitt. The exodus optimizer generator.
SIGMOD Rec., 16(3):160–172, 1987.

[6] G. Graefe and W. J. McKenna. The Volcano optimizer gener-
ator: Extensibility and efficient search. InProceedings of the
Ninth International Conference on Data Engineering, pages
209–218. IEEE Computer Society, 1993.

[7] B. Howe and D. Maier. Algebraic manipulation of scientific
datasets. InProceedings of the 30th International Confer-
ence on Very Large Databases (VLDB2004), 2004.

[8] B. Howe and D. Maier. Algebraic manipulation of scientific
datasets.IEEE Data Eng. Bull., 27(4):30–37, 2004.

[9] B. Howe, D. Maier, and A. Baptista. A language for spatial
data manipulation.Journal of Environmental Informatics,
2(2), December 2003.

[10] H. L. Jenter and R. P. Signell. Netcdf: A public-domain-
software solution to data-access problems for numerical
modelers. Unidata, 1992.

[11] J. Myers and A. Chappell. Binary format description lan-
guage. Technical report, Pacific Northwest National Labora-
tory, 2003.

[12] National Climatic Data Center. NCEP AWIPS eta model
data. http://nomads.ncdc.noaa.gov:9090/dods/NCDC
NOAAPort ETA.

[13] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and
V. Y. Lum. EXPRESS: A data EXtraction, Processing, amd
REStructuring System.ACM Transactions on Database Sys-
tems, 2(2):134–174, 1977.

[14] R. Srinivasan. XDR: External data representation standard,
RFC 1832. Technical report, Sun Microsystems, 1995.

[15] M. Westhead and M. Bull. Representing scientific data on the
Grid with BinX - binary XML description language. Tech-
nical report, EPCC, University of Edinburgh, 2003.

11

