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Introduction 

We have been working closely with environmental scientists who develop and maintain a 
data product generation engine to support an Environmental Observation and Forecasting System 
used to study the Columbia River Estuary.  Provenance issues have been encountered as artifacts 
of the complexity and variability of the legacy system, and we have made some observation about 
their nature.  Below we introduce the application and argue that a notion of multiple binding 
times is critical in a provenance scheme designed for data product generation. 

An Environmental Observation and Forecasting System 

Our domain involves an Environmental Observation and Forecasting System used to 
study the physical characteristics of the Columbia River estuary (CORIE).  CORIE is designed to 
disseminate physical river data to support applications such as salmon habitability studies, search 
and rescue operations, hazardous spill impact assessments, and hypothetical river policy 
scenarios.  Simulated and observed data are packaged into data products and distributed to 
researchers, environmental policy makers, and the general public via the web. 

The central component of the system is a simulation module, ELCIRC.  ELCIRC is based 
on the solution of the shallow water equations for continuity, momentum, and salt and heat 
balances using a Eulerian-Lagrangian finite volume method.  The mesh used to discretize the 
domain is rather extensive: 5 variables in 3 dimensions over 72 hours of simulated time amounts 
to 5GB of densely packed binary data generated each day.  This figure does not include the data 
products generated from the model output.  Clearly, disk and compute resources are at a premium 
despite falling hardware prices. 

Data products are currently generated via C codes initiated via Perl scripts and Unix cron 
jobs.  Obviously, defining and incorporating new data products is not trivial with such an 
architecture. To this end, we are designing a framework to ease data product specification and 
generation. 

There is certainly a need for developers and scientists to be able to define and produce 
one-off products on an ad hoc basis.  However, in the CORIE system, data products are also 
generated via data product lines, where the ‘same’ data product is generated repeatedly over a 
range of inputs.  While the goal of a single data product is to dynamically explore a particular 
data set in detail, the goal of a data product line is to provide thorough coverage over some 
parameter space.  For example, after having implemented a purportedly more accurate model, one 
might visualize key regions using ad hoc data products.  Once the model has been proven, one 
might want to regenerate an entire product line, that is, re-compute individual data products for 
each day of the prior month using an identical grid, identical forcings (simulation boundary 
inputs), and identical parameters.  The result is a comprehensive suite of data products that can be 
compared with each other meaningfully. 

Documenting the Product and the Process 

Provenance information associated with individual data products can provide additional 
context needed to make full use of the data.  However, modeling the system as a collection of 
data products is too restrictive.  Consider the following: 



 
• You are browsing through a product line consisting of transect images over mesh version 

3 for the month of July.  An image exists for each day in the first half of the month, but 
there are none for the second half. You would like an explanation for the missing data.  
But how do we associate provenance information to the lack of a data product? 

• Browsing another set of the published data products, you notice that isoline images for 
temperature are grouped into “hindcasts” and “forecasts.”  You imagine that these terms 
refer to the data or process used in generating the images, but specifically, what do they 
mean? 

 
These scenarios illustrate the need for provenance information stored and manage at the 

process level rather than the product level.  Both types of provenance information have to do with 
communicating context to data consumers, but the mechanism by which the information is stored 
and queried is likely to be quite different.  To communicate the production process, a more 
general notion of provenance must be adopted. 

 
 

 
Figure 1: Illustration of Binding Levels for a single processing step 

Provenance via Binding Levels 

We suggest that a data product’s identity is captured by a set of external objects that the 
product is incrementally bound to.  In the absence of a precise characterization for these objects, 
we some examples from our domain to illustrate the idea: 

 



code version algorithm control parameters 
river bathymetry data initial conditions 
horizontal mesh definition compute environment 
vertical layers definition processor (in a parallel environment) 
atmospheric forcings unix process id 
tidal forcings memory usage measurement 
estimated river discharge (for forecasts) running time measurement 
observed river discharge (for hindcasts) exit status 

 
Intuitively, a data product line holds some of these objects fixed while varying others.  How can 
we flexibly capture all the degrees of freedom in which a data product can vary without 
needlessly duplicating objects that stay fixed?  We are investigating the use of binding levels to 
model our observations that data products, and even individual processing steps, acquire their 
identity in stages.  

We suggest that data product generation should be modeled at multiple levels 
representing these different stages of binding.  Some systems do separately model programs, 
programs bound to their inputs, and program executions; these systems are applying the concept 
of binding times but are fixing the number and type of binding levels.  We extend this idea by 
allowing the number and type of binding levels to vary from processing step to processing step, 
from product to product and even for a single product over time.  As an example of the latter, 
consider the adaptation of a processing step to a parallel architecture.  The identity of the data 
product does not seem to change with the adaptation, though a provenance scheme should factor 
in this information if it is to provide a complete description. 

Figure 1 shows a possible binding time characterization of a single processing step.  The 
box at the top represents a conventional boxes and arrows description (a recipe) for a data product 
pipeline: the rounded rectangles represent operators and programs, ellipses represent intermediate 
or final results, and arrows represent data flow.  The binding tree below the pipeline describes an 
example set of bindings that might need to be represented for a particular processing step.  At the 
recipe level, a particular version of the code is selected.  The mesh level binds a particular mesh 
and geometry.  The parameters level is a bit overloaded; control parameters for the simulation 
algorithms and data selection parameters for a product are both included here.  Forcings are the 
data values over which the code is run, and executions are identical runs in different computing 
environment (or in the same environment at different times).  The dashed boxes in the tree 
represent potential bindings used to implicitly define new products that differ from existing 
products only in some binding instance.  Note, finally, that the order the levels are listed does not 
necessarily hold universally.  In fact, flexibly binding data and parameters in the order they 
become available can be a powerful use of this scheme. 

The different binding levels allow us to reason about the system at a partially bound 
stage.  We describe several below: 

 
• Schema checking. Once a mesh is bound to each step, we can verify that the components 

fit together not just with respect to data type, but with respect to the extent of the data as 
well.  Figure 2 shows an example of the kind of schema mismatch that can be caught at 
this binding level.  A transect product displays a vertical slice of the river based on a set 
of input points.  Once the mesh is bound, the validity of these points can be verified using 
the mesh’s embedded geometry. 

• Data structure.  Knowing the extent of the data also allows us to dynamically select 
good data structures.  In addition to a binding a mesh, this step may require binding of 
parameters, such as number of time steps, to be effective. 



• Scheduling. Parameters and mesh information together might allow us to algebraically 
manipulate the data product recipes, potentially identifying equivalent but more efficient 
expressions. 

• Data dependence.  Binding levels gives us a useful abstraction to determine the 
propagation of data through a system of processing steps.  This information is useful for 
determining how widely erroneous data has affected a data product line.  

 
 

 
Figure 2: We can use using binding time analysis to check for invalid product recipes 

Summary 

Multilevel models defined according to binding times seem to be a useful abstraction for 
reasoning about complex data product pipelines.  Binding levels allow us to generalize virtual 
data and discuss to the degree to which a data product is instantiated.  There are several useful 
applications of this model, including more thorough static checking, cross-recipe optimization, 
and error propagation analysis. 
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