
Modeling Data Product Generation

Bill Howe Dave Maier
bill@cse.ogi.edu maier@cse.ogi.edu

Introduction

We have been working closely with environmental scientists who develop and maintain a
data product generation engine to support an Environmental Observation and Forecasting System
used to study the Columbia River Estuary. Provenance issues have been encountered as artifacts
of the complexity and variability of the legacy system, and we have made some observation about
their nature. Below we introduce the application and argue that a notion of multiple binding
times is critical in a provenance scheme designed for data product generation.

An Environmental Observation and Forecasting System

Our domain involves an Environmental Observation and Forecasting System used to
study the physical characteristics of the Columbia River estuary (CORIE). CORIE is designed to
disseminate physical river data to support applications such as salmon habitability studies, search
and rescue operations, hazardous spill impact assessments, and hypothetical river policy
scenarios. Simulated and observed data are packaged into data products and distributed to
researchers, environmental policy makers, and the general public via the web.

The central component of the system is a simulation module, ELCIRC. ELCIRC is based
on the solution of the shallow water equations for continuity, momentum, and salt and heat
balances using a Eulerian-Lagrangian finite volume method. The mesh used to discretize the
domain is rather extensive: 5 variables in 3 dimensions over 72 hours of simulated time amounts
to 5GB of densely packed binary data generated each day. This figure does not include the data
products generated from the model output. Clearly, disk and compute resources are at a premium
despite falling hardware prices.

Data products are currently generated via C codes initiated via Perl scripts and Unix cron
jobs. Obviously, defining and incorporating new data products is not trivial with such an
architecture. To this end, we are designing a framework to ease data product specification and
generation.

There is certainly a need for developers and scientists to be able to define and produce
one-off products on an ad hoc basis. However, in the CORIE system, data products are also
generated via data product lines, where the ‘same’ data product is generated repeatedly over a
range of inputs. While the goal of a single data product is to dynamically explore a particular
data set in detail, the goal of a data product line is to provide thorough coverage over some
parameter space. For example, after having implemented a purportedly more accurate model, one
might visualize key regions using ad hoc data products. Once the model has been proven, one
might want to regenerate an entire product line, that is, re-compute individual data products for
each day of the prior month using an identical grid, identical forcings (simulation boundary
inputs), and identical parameters. The result is a comprehensive suite of data products that can be
compared with each other meaningfully.

Documenting the Product and the Process

Provenance information associated with individual data products can provide additional
context needed to make full use of the data. However, modeling the system as a collection of
data products is too restrictive. Consider the following:

• You are browsing through a product line consisting of transect images over mesh version

3 for the month of July. An image exists for each day in the first half of the month, but
there are none for the second half. You would like an explanation for the missing data.
But how do we associate provenance information to the lack of a data product?

• Browsing another set of the published data products, you notice that isoline images for
temperature are grouped into “hindcasts” and “forecasts.” You imagine that these terms
refer to the data or process used in generating the images, but specifically, what do they
mean?

These scenarios illustrate the need for provenance information stored and manage at the

process level rather than the product level. Both types of provenance information have to do with
communicating context to data consumers, but the mechanism by which the information is stored
and queried is likely to be quite different. To communicate the production process, a more
general notion of provenance must be adopted.

Figure 1: Illustration of Binding Levels for a single processing step

Provenance via Binding Levels

We suggest that a data product’s identity is captured by a set of external objects that the
product is incrementally bound to. In the absence of a precise characterization for these objects,
we some examples from our domain to illustrate the idea:

code version algorithm control parameters
river bathymetry data initial conditions
horizontal mesh definition compute environment
vertical layers definition processor (in a parallel environment)
atmospheric forcings unix process id
tidal forcings memory usage measurement
estimated river discharge (for forecasts) running time measurement
observed river discharge (for hindcasts) exit status

Intuitively, a data product line holds some of these objects fixed while varying others. How can
we flexibly capture all the degrees of freedom in which a data product can vary without
needlessly duplicating objects that stay fixed? We are investigating the use of binding levels to
model our observations that data products, and even individual processing steps, acquire their
identity in stages.

We suggest that data product generation should be modeled at multiple levels
representing these different stages of binding. Some systems do separately model programs,
programs bound to their inputs, and program executions; these systems are applying the concept
of binding times but are fixing the number and type of binding levels. We extend this idea by
allowing the number and type of binding levels to vary from processing step to processing step,
from product to product and even for a single product over time. As an example of the latter,
consider the adaptation of a processing step to a parallel architecture. The identity of the data
product does not seem to change with the adaptation, though a provenance scheme should factor
in this information if it is to provide a complete description.

Figure 1 shows a possible binding time characterization of a single processing step. The
box at the top represents a conventional boxes and arrows description (a recipe) for a data product
pipeline: the rounded rectangles represent operators and programs, ellipses represent intermediate
or final results, and arrows represent data flow. The binding tree below the pipeline describes an
example set of bindings that might need to be represented for a particular processing step. At the
recipe level, a particular version of the code is selected. The mesh level binds a particular mesh
and geometry. The parameters level is a bit overloaded; control parameters for the simulation
algorithms and data selection parameters for a product are both included here. Forcings are the
data values over which the code is run, and executions are identical runs in different computing
environment (or in the same environment at different times). The dashed boxes in the tree
represent potential bindings used to implicitly define new products that differ from existing
products only in some binding instance. Note, finally, that the order the levels are listed does not
necessarily hold universally. In fact, flexibly binding data and parameters in the order they
become available can be a powerful use of this scheme.

The different binding levels allow us to reason about the system at a partially bound
stage. We describe several below:

• Schema checking. Once a mesh is bound to each step, we can verify that the components

fit together not just with respect to data type, but with respect to the extent of the data as
well. Figure 2 shows an example of the kind of schema mismatch that can be caught at
this binding level. A transect product displays a vertical slice of the river based on a set
of input points. Once the mesh is bound, the validity of these points can be verified using
the mesh’s embedded geometry.

• Data structure. Knowing the extent of the data also allows us to dynamically select
good data structures. In addition to a binding a mesh, this step may require binding of
parameters, such as number of time steps, to be effective.

• Scheduling. Parameters and mesh information together might allow us to algebraically
manipulate the data product recipes, potentially identifying equivalent but more efficient
expressions.

• Data dependence. Binding levels gives us a useful abstraction to determine the
propagation of data through a system of processing steps. This information is useful for
determining how widely erroneous data has affected a data product line.

Figure 2: We can use using binding time analysis to check for invalid product recipes

Summary

Multilevel models defined according to binding times seem to be a useful abstraction for
reasoning about complex data product pipelines. Binding levels allow us to generalize virtual
data and discuss to the degree to which a data product is instantiated. There are several useful
applications of this model, including more thorough static checking, cross-recipe optimization,
and error propagation analysis.

Acknowledgements

This work is supported under NSF grant ACI 0121475 We would like to thank the entire CORIE
research team for their help and insight.

